La présentation est en train de télécharger. S'il vous plaît, attendez

La présentation est en train de télécharger. S'il vous plaît, attendez

Introduction au CHAOS D’ après Larry Liebovitch, Ph.D.

Présentations similaires


Présentation au sujet: "Introduction au CHAOS D’ après Larry Liebovitch, Ph.D."— Transcription de la présentation:

1 Introduction au CHAOS D’ après Larry Liebovitch, Ph.D.
Université de Floride Atlantique 2004 – extrait traduit approximativement par D.Seban

2 Ces deux ensembles de données ont les mêmes
moyennes aspects irréguliers gammes d’intensité

3

4 Hasard (random) x(n) = RND Données 1

5 CHAOS Déterministe x(n+1) = 3,95 x(n) [1-x(n)] Données 2

6 etc.

7

8 Hasard random x(n) = RND Données 1

9 CHAOS déterministe x(n+1) = 3,95 x(n) [1-x(n)] Données 2 x(n+1) x(n)

10 CHAOS Définition on prédit cette valeur Déterministe Avec ces valeurs

11 x(n+1) = f(x(n), x(n-1), x(n-2))
CHAOS Définition Petit nombre de Variables x(n+1) = f(x(n), x(n-1), x(n-2))

12 CHAOS Définition Résultat Complexe

13 CHAOS Propriétés Espace des phases de basse dimension
d , hasard d = 1, chaos espace des phases

14 CHAOS Propriétés Sensibilité aux conditions initiales
Valeurs initiales très proches Valeurs finales très différentes

15 CHAOS Propriétés Bifurcations Petit changement pour un paramètre
Un motif Un autre motif

16 Séries temporelles X(t) Y(t) Z(t) enchassées

17 Espace des phases Z(t) Y(t) X(t)

18 Attracteurs dans l’espace des phases
Equation logistique X(n+1) = 3,95 X(n) [1-X(n)] X(n+1) X(n)

19 Attracteurs dans l’espace des phases
Z(t) Equations de Lorenz Y(t) X(t)

20 Le nombre de variables indépendantes est supérieur
à la dimension fractale d de l’attracteur Equation logistique espace des phases Séries temporelles d<1 X(n+1) X(n) Ici d < 1, l’équation des séries f(t) qui ont généré cet attracteur depend d’1 variable indépendante.

21 Le nombre de variables indépendantes est supérieur
à la dimension fractale d de l’attracteur Equations de Lorenz séries f(t) espace des phases d =2.03 Z(t) X(n+1) n X(t) Y(t) Ici d = 2.03, l’équation des séries f(t) qui ont généré cet attracteur dépend de 3 variables indépendantes. .

22 Données 1 Séries temporelles
Espace des phases avec attracteur dont la dimension fractale tend vers l’infini Quand , Les séries temporelles ont été générées par un mécanisme aléatoire. d

23 Données 2 séries temporelles
espace des phases d = 1 Quand d = 1 , les séries ont été générées par un mécanisme déterministe.

24 Construit par des mesures directes:
Espace des phases Construit par des mesures directes: Mesures X(t), Y(t), Z(t) Z(t) Chaque point dans l’espace des phases muni d’un repère, a des coordonnées X(t), Y(t), Z(t) X(t) Y(t)

25 Construit à partir d’une seule variable
Espace des phases Construit à partir d’une seule variable X(t+2 t) Théorème de Takens Takens 1981 In Dynamical Systems and Turbulence Ed. Rand & Young, Springer-Verlag, pp chaque point dans l’espace des phases a des coordonnées X(t), X(t + t), X(t+2 t) X(t) X(t+ t)

26 Teich et al. 1989 Acta Otolaryngol (Stockh), Suppl. 467 ;265 - 279
Position et vitesse de déplacement de la membrane d’une cellule ciliée de l’oreille interne Teich et al Acta Otolaryngol (Stockh), Suppl. 467 ; 10-1 stimulus = 171 Hz vitesse (cm/sec) -10-1 -10-4 déplacement (cm) 3 x 10-5 Rappel physiologique :

27 Teich et al. 1989 Acta Otolaryngol (Stockh), Suppl. 467 ;265 - 279
Position et vitesse de déplacement de la membrane d’une cellule ciliée de l’oreille interne Teich et al Acta Otolaryngol (Stockh), Suppl. 467 ; 3 x 10-2 stimulus = 610 Hz vitesse (cm/sec) -3 x 10-2 déplacement (cm) -2 x 10-5 5 x 10-6

28 Cellules myocardiques de poussin micro-électrode
Glass, Guevara, Bélair & Shrier. 1984 Phys. Rev. A29: v source électrique voltmètre cellule cardiaque de poussin

29 Cellules myocardiques de poussin pas de stlimulation externe
Battement spontané, pas de stlimulation externe voltage temps

30 Stimulées périodiquement
Cellules myocardiques de poussin Stimulées périodiquement 2 stimulations - 1 battement 2:1

31 Stimulées périodiquement
Cellules myocardiques de poussin Stimulées périodiquement 1 stimulation - 1 battement 1:1

32 Stimulées périodiquement
Cellules myocardiques de poussin Stimulées périodiquement 2 stimulations - 3 battements 2:3

33 Le Pattern de battement des cellules myocardiques de poussin
Glass, Guevara, Bélair & Shrier.1984 Phys. Rev. A29: Stimulation périodique - réponse chaotique

34 Le Pattern de battement des cellules myocardiques de poussin poursuivi
= phase de battement en fonction du stimulus phase vs. phase précédente expérience théorie (carte en arcs de cercle) 1.0 0.5 i + 1 0.5 1.0 0.5 1.0 i

35 Tant que la courbe dans l’espace des phases est de dimension 1,
Le Pattern de battement des cellules myocardiques de poussin Glass, Guevara, Belair & Shrier.1984 Phys. Rev. A29: Tant que la courbe dans l’espace des phases est de dimension 1, la synchronisation entre les battements de ces cellules peut être décrite par une relation déterministe.

36 Procédure Séries temporelles Par ex. le voltage en fonction du temps
Représenter les séries temporelles en un objet géométrique (=variété topologique). Cette opération s’appelle “enchassement” (embedding)

37 Procédure sa dimension fractale
Déterminer les propriétés topologiques de cet objet et particulièrement, sa dimension fractale Dimension fractale élevée = hasard Dimension fractale basse = Chaos déterministe

38 La dimension fractale n’est pas égale à la dimension fractale!

39 Dimension fractale d: combien de nouveaux détails de la série temporelle apparaissent quand ils sont observés à une échelle de résolution temporelle plus fine. X temps

40 Dimension fractale: La dimension d de l’attracteur dans l’espace des phases est corrélé au nombre de variables indépendantes x(t+2 t) d X x(t) x(t+ t) temps

41 Mécanisme qui génère les données
Chance d(espace des phases) Données ? x(t) Déterminisme d(espace des phases) = faible t

42 Lorenz 1963 J. Atmos. Sci. 20:13-141 Air Chaud
(Rayleigh, Saltzman) Modèle Air froid Air Chaud

43 Lorenz 1963 J. Atmos. Sci. 20:13-141 Equations

44 Lorenz 1963 J. Atmos. Sci. 20:13-141 Equations
X = vitesse de la circulation convective X > 0 sens horaire, X < 0 sens anti-horaire Y = différence de température entre les flux montants et descendants

45 Lorenz 1963 J. Atmos. Sci. 20:13-141 Equations
Z = température du bas vers le haut moins le gradient linéaire

46 Lorenz 1963 J. Atmos. Sci. 20:13-141 Espace des phases Z X Y

47 Attracteur de Lorenz Cylindre d’air tournant dans le sens anti-horaire
cylindre d‘air tournant dans le sens horaire X < 0 X > 0

48 Sensibilité aux conditions initiales Equations de Lorenz
Condition initiale: X= 1. X(t) identique différent X= X(t) IXsommet(t) - Xbase(t)I e t = Exposant de Liapunov

49 Déterministe non-chaotique
X(n+1) = f {X(n)} Précision des valeurs calculées pour X(n): 1, , ,254 5, , ,234 3,212

50 Déterministe chaotique
X(n+1) = f {X(n)} Précision des valeurs calculées pour X(n): 3, ,45? 3,4?? 3,??? ? ? ?

51 Conditions initiales X(t0), Y(t0), Z(t0)...
Univers “de l’horloger” détermimiste non-chaotique Conditions initiales X(t0), Y(t0), Z(t0)... Calcul possible de toutes les valeurs futures X(t), Y(t), Z(t)... Equations

52 Conditions initiales X(t0), Y(t0), Z(t0)...
Univers Chaotique Chaotique déterministe Conditions initiales X(t0), Y(t0), Z(t0)... sensibilité aux conditions initiales Impossibilité de calculer à long terme X(t), Y(t), Z(t)... Equations

53 Attracteur Etrange de Lorenz
En partant de loin: Les trajectoires venant du dehors sont attirées VERS lui d’où son nom d’attracteur!

54 Attracteur Etrange de Lorenz
En partant dedans: Des trajectoires proches sur l’attracteur sont poussées vers la séparation l’une de l’autre: BIFURCATION (sensitibilité aux conditions initiales)

55 L’attracteur “Etrange” est fractal
espace des phases ordinaire étrange

56 “Chaotique” sensibilité aux conditions initiales
Séries temporelles X(t) X(t) t t non chaotique chaotique

57 “Shadowing Theorem” Si les erreurs à chaque étape d’intégration sont petites, il existe une trajectoire EXACTE qui arrive à une petite distance de la trajectoire erronée que nous avons calculée

58 Shadowing Theorem Il existe un nombre INFINI de trajectoires dans un attracteur. Quand nous sortons de l’attracteur, nous sommes aspirés vers l’arrière à une vitesse exponentielle. Nous sommes sur une trajectoire exacte, pas juste sur celle où nous croyons être.

59 4. Nous sommes sur une trajectoire “réelle”
3. puis nous sommes attirés vers l’attracteur 2. L’erreur nous fait sortir de l’attracteur 1. Nous démarrons ici Trajectoire que nous essayons de calculer Trajectoire que nous calculons en réalité

60 La sensibilité aux conditions initiales signifie que les conditions de l’expérience peuvent être très semblables, mais que les résultats peuvent être assez différents.

61 Mardi 10 µl ArT +

62 Vendredi 10 µl ArT +

63 X(n + 1) = A X(n) [1 -X (n)] A = 3,22 X(n) n

64 X(n + 1) = A X(n) [1 -X (n)] A = 3,42 X(n) n

65 Bifurcation A = 3,62 X(n) n

66 x(n + 1) = A x(n) [1 -x(n)] Commencez avec une valeur de A
commencez avec x(1) = 0,5 utilisez l’équation pour calculer x(2) à partir de x(1). x(3) à partir de x(2) et ainsi de suite... jusqu’à x(300).

67 x(n + 1) = A x(n) [1 -x(n)] Ignorez x(1) à x(50), ce ne sont que les valeurs de transition hors de l’attracteur. Tracez x(51) to x(300) sur l’axe des Y au-dessus de la valeur de A sur l’axe des X. Changez la valeur de A, et répétez la procédure.

68 Des changements soudains dans le pattern indiquent la présence de bifurcations ( )
x(n) x(n)

69 les réactions biochimiques.
Glycolyse L’énergie du glucose est transferrée dans l’ATP. L’ATP est utilisé comme une source d’énergie pour piloter les réactions biochimiques. - + -

70 Glycolyse Théorie entrée: sucre sortie: ATP périodique temps temps
Markus and Hess 1985 Arch. Biol. Med. Exp. 18: entrée: sucre sortie: ATP périodique temps temps chaotique temps temps

71 Glycolyse Expériences Consommation d’énergie par
Hess and Markus 1987 Trends. Biomed. Sci. 12:45-48 Consommation d’énergie par de la levure de boulanger ATP mesuré par fluorescence entrée de glucose temps

72 Glycolyse Périodique fluorescence Expériences Vin
Hess and Markus 1987 Trends. Biomed. Sci. 12:45-48 Vin

73 Glycolyse Expériences Chaotique 20 min
Hess and Markus 1987 Trends. Biomed. Sci. 12:45-48 Chaotique 20 min

74 Markus et al. 1985. Biophys. Chem 22:95-105
Glycolyse Markus et al Biophys. Chem 22:95-105 Diagramme de Bifurcation théorie expérience chaos

75 Markus et al. 1985. Biophys. Chem 22:95-105
Glycolyse Markus et al Biophys. Chem 22:95-105 L’ADP mesuré à la même phase du cycle du glucose (l’ATP est en rapport avec l’ADP) période de concentration en ATP # = période du cycle du glucose fréquence du cycle du glucose

76 Transitions de phase Faites battre l’index gauche
Haken Synergetics: An Introduction Springer-Verlag Kelso Dynamic Patterns MIT Press Faites battre l’index gauche au rythme (en phase) avec le métronome. Essayez de faire battre l’index droit hors du rythme du métronome.

77 Transitions de phase Haken Synergetics: An Introduction Springer-Verlag Kelso Dynamic Patterns MIT Press Pendant que la fréquence du métronome augmente, l’index droit passe d’une oscillation hors-phase (décalé / métronome) à une oscillation en phase.

78 Position de l’index droit Position de l’index gauche
Transitions de phase Haken Synergetics: An Introduction Springer-Verlag Kelso Dynamic Patterns MIT Press A. Séries temporelles ABD ADD Position de l’index droit Position de l’index gauche

79 Transitions de phase auto-organisées
Haken Synergetics: An Introduction Springer-Verlag Kelso Dynamic Patterns MIT Press B. Évaluation du point de phase relative 360o 180o 2 sec 0o Position de l’index droit

80 Potentiel du système paramètre de contrôle
Transition de phase Haken 1983 Synergetics: An Introduction Springer-Verlag Kelso 1995 Dynamic Patterns MIT Press cette bifurcation peut s’expliquer comme un changement de fonction d’énergie potentielle semblable au changement qui survient dans une transition de phase physique. Potentiel du système paramètre de contrôle

81 De petits changements dans les paramètres peuvent produire de gros changements dans le comportement.
10cc ArT + 9cc ArT +

82 Les bifurcations peuvent servir à tester si le système est déterministe
Modèle mathématique déterministe Expérience Bifurcations prédites Bifurcations observées correspondance ?

83 La dimension fractale de l’espace des phases nous dit si les données étaient générées par le hasard ou par un mécanisme déterministe. Données expérimentales x(t) t

84 La dimension fractale de l’espace des phases nous dit si les données étaient générées par le hasard ou par un mécanisme déterministe. Espace des phases X(t+ t) X(t)

85 La dimension fractale de l’espace des phases nous dit si les données étaient générées par le hasard ou par un mécanisme déterministe. d = bas d Déterministe Hasard Mécanisme qui a généré les données expérimentales

86 Schaffer and Kot 1986 Chaos ed. Holden,
Epidémies Schaffer and Kot 1986 Chaos ed. Holden, Princeton Univ. Press New York varicelle rougeole 15000 4000 Séries temporelles: Espace des phases:

87 Epidémies Kobenhavn 3,1 3,4 Milwaukee 2,6 3,2 St. Louis 2,2 2,7
Olsen and Schaffer 1990 Science 249: dimension de l’attracteur dans l’espace des phases rougeole varicelle Kobenhavn , ,4 Milwaukee , ,2 St. Louis , ,7 New York , ,3

88 Olsen and Schaffer 1990 Science 249:499-504
Epidémies Olsen and Schaffer 1990 Science 249: Modèles SEIR: 4 variables indépendantes S susceptible = prédisposé E exposé, mais pas encore infecté I infecté R recovered = convalescent

89 Olsen and Schaffer 1990 Science 249:499-504
Epidémies Olsen and Schaffer 1990 Science 249: Conclusion: rougeole: chaotique varicelle: quasi – cyclique annuel

90 Electrocardiogramme:
enregistrement électrique de l’activité musculaire cardiaque Séries temporelles: voltage Kaplan and Cohen 1990 Circ. Res. 67: Fibrillation ventriculaire mort normal Espace des phases V(t), V(t+ t) 8 D = 1 chaos D = hasard

91 Electrocardiogramme:
enregistrement électrique de l’activité musculaire cardiaque normal Séries temporelles: voltage Babloyantz and Destexhe 1988 Biol. Cybern. 58: D = 6 chaos

92 Electrocardiogramme:
enregistrement électrique de l’activité musculaire cardiaque Séries temporelles: intervalle de temps entre les battements cardiaques Babloyantz and Destexhe 1988 Biol. Cybern. 58: normal D = 6 chaos FV mort Evans, Khan, Garfinkel, Kass, Albano, and Diamond 1989 Circ. Suppl. 80:II-134 D = 4 chaos arythmies induites Zbilut, Mayer-Kress, Sobotka, O’Toole and Thomas 1989 Biol. Cybern, 61: D = 3 chaos

93 Electroencephalogramme: enregistrement électrique
de l’activité cérébrale Mayer-Kress and Layne 1987 Ann. N.Y. Acad. Sci. 504:62-78 Espace des phases: séries temporelles: V(t) V(t) V(t+ t) D=8 chaos

94 Electroencephalogramme: enregistrement électrique
de l’activité cérébrale Rapp, Bashore, Martinerie, Albano, Zimmerman, and Mees 1989 Brain Topography 2:99-118 Babloyantz and Destexhe 1988 In: From Chemical to Biological Organization ed. Markus, Muller, and Nicolis, Springer-Verlag Xu and Xu 1988 Bull. Math. Biol. 5:

95 Electroencephalogramme:
enregistrement électrique de l’activité cérébrale Différents groupes de chercheurs trouvent différentes dimensions en appliquant les mêmes conditions expérimentales

96 Electroencephalogramme: enregistrement électrique
de l’activité cérébrale Peut-être que… tâche mentale Éveil calme, paupières fermées Sommeil virus: Creutzfeld -Jakob Epilepsie: petit mal Méditation, Qi-kong dimension élevée basse dimension

97 Chaîne aléatoire de Markov
Comment calculer le x(n) suivant: Chaque t pioche un nombre R au hasard entre 0 et < R < 1 Si ouvert et que R < pc -> fermé Si fermé et que R < po -> ouvert

98 Chaîne de Markov Etat ouvert:
probabilité de se fermer dans l’état suivant t = pc ouvert Etat fermé: probabilité de s’ouvrir dans l’état suivant t=po t fermé

99 Carte d’itération déterministe
Liebovitch & Tóth 1991 J. Theor. Biol. 148: ouvert x(n+1) fermé x(n) x(n) = état au temps n x(n+1) = f (x(n))

100 Carte d’itération déterministe
Liebovitch & Tóth 1991 J. Theor. Biol. 148: Comment calculer le x(n) suivant: x(3) x(2) x(1) x(2)

101 Ecroulement du pont de Tacoma
Le 7 novembre 1940, le pont suspendu de Tacoma entre en oscillation sous l'action du vent. L'amplitude de torsion devient excessive et le pont s'écroule. Une revue moderne explique pourquoi les explications données dans les livres de physique est fausse: Billah and Scanlan 1991 Am. J. Phys. 59:

102 Equation d’une résonnance simple:
Le pont de Tacoma Equation d’une résonnance simple: x + Ax + Bx = f ( t ) Equation de la vibration qui a détruit le pont de Tacoma: x + Ax + Bx = f ( x, x )

103 Hasard Comme une petite molécule commutée
sans cesse d’un état à l’autre par la chaleur qui l’entoure (agitation moléculaire) le changement d’état est provoqué par des fluctuations thermiques kT aléatoires FERME OUVERT hasard énergie

104 Déterministe Comme une petite machine mécanique
avec des cliquets et des ressorts Le changement d’état est commandé par des mouvements cohérents qui résultent de la structure et des forces atomiques, électrostatiques et hydrophobes des protéines constituant le canal. fermé ouvert énergie déterministe

105 Analyse des données expérimentales
La bonne nouvelle: En principe, vous pouvez savoir si les données ont été générées par un mécanisme aléatoire ou déterministe

106 Analyse des données expérimentales
La mauvaise nouvelle: En pratique, ce n’est pas facile.

107 Pourquoi c’est difficile de savoir si un mécanisme est aléatoire ou déterministe
Beaucoup de données nécessaires Très grosse masse de données: 10d? Le taux d’échantillonage doit couvrir l’attracteur uniformément .échantillonnage trop fréquent: on voit seulement les trajectoires 1-d échantillonage trop rare: on ne voit plus l’attracteur du tout

108 L’analyse des données est délicate
Pourquoi c’est difficile de savoir si un mécanisme est aléatoire ou déterministe L’analyse des données est délicate Choix de l’intervalle de temps t pour l’enchassement intervalle trop court: la variable ne change pas assez, les dérivées ne sont pas précises intervalle trop long: la variable change trop, les dérivées ne sont pas précises. Méthode d’évaluation de la dimension.

109 Les mathématiques ne sont pas la connaissance
Pourquoi c’est difficile de savoir si un mécanisme est aléatoire ou déterministe Les mathématiques ne sont pas la connaissance Les théorèmes d’enchassement ne sont prouvés que pour les séries temporelles “lisses”.

110 Combien de valeurs de séries temporelles faut-il ?
Nombre de valeurs dans les séries temporelles, nécessaires pour évaluer correctement la dimension d’un attracteur de dimension D N quand D = 6

111 Combien de valeurs de séries temporelles faut-il ?
Smith 1988 Phys. Lett. A133: D Wolff et al. 1985 Physica D16: D Wolf et al. 1985 Physica D16: D

112 Combien de valeurs de séries temporelles faut-il ?
Nerenberg & Essex 1990 Phys. Rev. A42:7065 _______1________ kd1/2[A In (k)](D+2)/2 D+2 2 200000 D/2 2(k-1) ((D+4)/2) (1/2) ((D+3)/2) x[ ]

113 Combien de valeurs de séries temporelles faut-il ?
Ding et al. 1993 Phys. Rev. Lett. 70:3872 10D/2 1000 (D/2)! D/2 Gershenfeld 1990 preprint 2D 10

114 Exemple pathologique où un processus aléatoire de dimension infinie a un attracteur
de BASSE dimension 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 nombres pris au hasard

115 Séries temporelles: 6, 6, 6, 6, 6, 6, 6, 6 ... Espace des phases:
Exemple pathologique où un processus aléatoire de dimension infinie a un attracteur de BASSE dimension Séries temporelles: 6, 6, 6, 6, 6, 6, 6, 6 ... Espace des phases: D = 0 6 6 6

116 Organisation des Vecteurs dans
l’espace des phases Kaplan and Glass 1992 Phys. Rev. Lett. 68: Hasard Pas de flux uniforme petite direction moyenne

117 Organisation des Vecteurs dans
l’espace des phases Kaplan and Glass 1992 Phys. Rev. Lett. 68: Déterministe Flux uniforme grande direction moyenne

118 Expérience FAIBLE Séries temporelles Espace des phases Dimension
basse = déterministe élevée = hasard exemples: ECG, EEG

119 Expérience FORTE Faire varier un paramètre Voir le comportement
prédit par un modèle non-linéaire exemples: stimulation électrique de cellules, réactions biochimiques

120 Contrôle Système Non-Chaotique Paramètre de contrôle données sortantes

121 Contrôle Système chaotique Paramètre de contrôle données sortantes

122 Contrôle des systèmes biologiques
L’ancienne manière d’agir Un contrôle par la force brute GROSSE machine GROSSE puissance Ampères coeur

123 Contrôle des systèmes biologiques
Nouvelle manière d’agir: de délicates impulsions astucieusement rythmées petite machine petite puissance mA coeur

124 Comment concevons-nous les systèmes biologiques ?
Ancienne façon de voir les choses: Des forces pilotent le système entre des états stables

125 Comment concevons-nous les systèmes biologiques ?
état stable A état stable C Force D Force E état stable B

126 Nouvelle façon de voir:
Comment concevons-nous les systèmes biologiques ? Nouvelle façon de voir: Se maintenir un bon moment dans une condition oblige le système à évoluer vers une autre condition.

127 Comment concevons-nous les systèmes biologiques ?
état instable A état instable C Dynamique de A Dynamique de B état instable B

128 PEU DE VARIABLES INDEPENDANTES
Le Chaos en résumé PEU DE VARIABLES INDEPENDANTES Mais le comportement est si complexe qu’il mime un comportement aléatoire.

129 Le Chaos en résumé SYSTEME DYNAMIQUE xi (t+ t) = f (xi (t))
DETERMINISTE La valeur des variables à l’instant suivant peut être calculée à partir des valeurs à l’instant précédent. xi (t+ t) = f (xi (t))

130 SENSIBILITE AUX CONDITIONS INITIALES NON PREDICTIBLE A LONG TERME
Le Chaos en résumé SENSIBILITE AUX CONDITIONS INITIALES NON PREDICTIBLE A LONG TERME x1(t+ t) - x2(t+ t) = Ae t

131 L’espace des phases est de basse dimension
Le Chaos en résumé ATTRACTEUR ETRANGE L’espace des phases est de basse dimension (souvent fractale).


Télécharger ppt "Introduction au CHAOS D’ après Larry Liebovitch, Ph.D."

Présentations similaires


Annonces Google