La présentation est en train de télécharger. S'il vous plaît, attendez

La présentation est en train de télécharger. S'il vous plaît, attendez

Page R&D 1 LTE/SAE Evolved Packet System (EPS). Page Page 2 Evolution des usages en data Mobile.

Présentations similaires


Présentation au sujet: "Page R&D 1 LTE/SAE Evolved Packet System (EPS). Page Page 2 Evolution des usages en data Mobile."— Transcription de la présentation:

1 Page R&D 1 LTE/SAE Evolved Packet System (EPS)

2 Page Page 2 Evolution des usages en data Mobile

3 Page R&D 3 Le contexte des standards 3GPP 2000 Release 3: First 3G UMTS release 2001 Release 4: Bearer Independent Core Network (BICN) 2002 Release 5: HSDPA and IMS 2004Release 6: HSUPA, MBMS and WLAN interworking 2006Release 7: HSPA+ and IMS evolution 2008Release 8: LTE/SAE, common IMS Release 9 is expected to include HSPA and LTE enhancements. Release 10 is expected to specify LTE Advanced that meets the requirements set by ITU’s IMT-Advanced project.

4 Page Orange Labs – LTE workshop – Olivier Simon – June 2009 MBWA performance targets Operator requirements for the radio interface: DL peak rate > 100 Mbps (7 x HSDPA) UL peak rate > 50 Mbps (5 x HSUPA) DL spectrum eff. per cell > 2 bps/Hz (3 x HSDPA) UL spectrum eff. per cell > 1 bps/Hz (2 x HSUPA) User plane round trip latency < 10 ms (1/5 x HSDPA) How to achieve the performance targets ? Most B3G systems like LTE, 802.16m, and ex-UMB use similar techniques – physics are the same for everybody.

5 Page Page 5

6 Page R&D 6 Les principales caractéristiques OFDMA en downlink, 100 Mbps pour 20MHz de spectre (proche de WiMAX) SC-FDMA en uplink, 50 Mbps pour 20MHz de spectre (nouveau) Même plan de fréquence que la 3G possible, avec des largeur de bande de 1.25, 1.6, 2.5, 5, 10, 15, 20 MHz Connectivité maintenue jusqu’à 350 Km/h Latence de moins de 5ms

7 Page R&D 7 Physical and Mac Layer Evolved UTRAN

8 Page R&D 8 Physical layer OFDM Frequency Division Multiplexing Orthogonal Frequency Fast Fourier Transform and Inverse Fast Fourier Transform Cyclic prefix > delay spread Copy and paste of the end of the symbol as prefix (circular convolution)

9 Page R&D 9 Accès multiples : OFDM-FDMA et OFDM-TDMA OFDM-FDMA Chaque utilisateur occupe un ensemble de sous-porteuses pour un temps donné. OFDM-TDMA Chaque utilisateur occupe plus d’un symbole OFDM, et transmet sur plusieurs timeslots.

10 Page R&D 10 Accès multiples : OFDMA Chaque utilisateur occupe une jeu de sous-porteuses pendant un temps donné. Avantages d’OFDMA High speed transmission Moins d’interférence entre cellules Granularité

11 Page R&D 11 Symbole OFDM Exemple du mapping du « reference symbol »

12 Page R&D 12 Structure protocolaire de l’interface Radio

13 Page Orange Labs – LTE workshop – Olivier Simon – June 2009 Multi-antenna – spatial dimension Increase spectrum efficiency Theoretical Maximum: Data Rate = min(N TX, N RX ) x Single antenna Rate Yes but… Additional antenna branches are costly especially on the terminal side Achievable rates highly depend on propagation conditions Mobile feedback required for high rates -> limitation of supported speeds Different and adaptive solutions required depending on the deployment scenario (coverage vs. rate trade-off). N TX N RX

14 Page Orange Labs – LTE workshop – Olivier Simon – June 2009 Multi-antenna – spatial dimension Multi-antenna mechanisms in LTE downlink Space diversity for improved robustness of common control channels and for users with high speed and/or low rate Beamforming for coverage limited deployments Spatial multiplexing for high rates near the base station. Adaptive selection of number of layers. Spatial multiplexing of users in scenarios with high user density and low rate traffic. Only single antenna transmission considered in LTE uplink Spatial multiplexing of users with multiple antennas at the base station receiver.

15 Page R&D 15 Architecture Evolved Packet Core

16 Page R&D 16 Architecture Iub S1 EPC eNode B X2 eNode B Iu RNC X2 RNC Node B Packet Core Circuit Core Iu UTRAN E-UTRAN - Simplification par suppression de la partie circuit - Réseau tout IP

17 Page Orange Labs – LTE workshop – Olivier Simon – June 2009 LTE/EPC nodes functions eNB Handles all radio layers (RRC, PDCP, RLC, MAC, PHY) Radio resource management Admission control Traffic scheduling MME Responsible for all Control Plane handling NAS signaling termination (Network attach, Service Request) Paging, TAU, radio bearer activation/deactivation Handles mobility between 2G/3G and LTE Serving-GW Responsible for Data Plane handling Routes and forwards the data traffic Terminates the DL data path for UE in idle mode and triggers paging Mobility anchor for intra LTE HO and for HO with 3GPP networks PDN-GW Provides IP connectivity to the UE and gives access to the PDN network Routes the data traffic Policy enforcement and packet filtering per UE Mobility anchor for inter RAT HO with non-3GPP networks (e.g. WiMAX)

18 Page R&D 18 Mais aussi connectable avec un réseau WLAN S1 eNodeB X2 eNodeB WLAN 3GPP AAA server EPC PCRF S-GWMME PDN GW IMS MGW MGCF P/I/S CSCF HSS

19 Page Page 19 IP Multimedia Subsystem (IMS) Convergence = Internet + Mobile + Filaire Comment créer une dynamique de type développement Web dans les Telecom Architecture complexe pour des développements rapides sans limitation Des services « de base » et des services complexes Une réalité opérationnelle

20 Page Orange Labs – LTE workshop – Olivier Simon – June 2009 Des résultats de mesures Peak Vs Mean difference Performance results

21 Page Orange Labs – LTE workshop – Olivier Simon – June 2009 Peak rate Vs mean rate tendency 2005 1Mbps 10Mbps 100Mbps 2010201220022007 UMTS HSDPA LTE HSPA+ Peak rate -max theoretical throughput -Never achieved -Primarily defined by device capabilities -Always used for announcements throughput Mean rate -Realistic value for a given load -2 FTP users here -Primarily defined by system capabilities HSDPA introduction -Resource sharing -Fast radio adaptation -Starting point of the increasing delta peak vs mean Growing Potential misunderstanding

22 Page Orange Labs – LTE workshop – Olivier Simon – June 2009 Assomptions Scenarios and main simulation parameters Urban deployment scenario : ISD = 500m Indoor environment : Penetration Loss = 20dB Bandwidth : 5MHz HSDPA ; 10MHz LTE UE speed : 3km/h

23 Page Orange Labs – LTE workshop – Olivier Simon – June 2009 User throughput (downlink) 3GPP Simulation assumptions : ISD 500m, 3km/h 18 +55% +72% +210%

24 Page Orange Labs – LTE workshop – Olivier Simon – June 2009 User throughput (Uplink) 3GPP Simulation assumptions : ISD 500m, 3km/h +168% ?

25 Page Orange Labs – LTE workshop – Olivier Simon – June 2009 Cell edge (Down) +43% +84% +157% 3GPP Simulation assumptions : ISD 500m, 3km/h

26 Page Orange Labs – LTE workshop – Olivier Simon – June 2009 Cell edge (Up) +200% ? 3GPP Simulation assumptions : ISD 500m, 3km/h

27 Page Orange Labs – LTE workshop – Olivier Simon – June 2009 User latency Latency gain mainly improves -User experience (reactivity) -Voice, video and audio capacity

28 Page Page 28 Pilote LTE sur Monaco : Monaco 4G Monaco un écosystème LTE complet : technologie et usage Partenariat : E///, STE, S&W, R&S, HuaWei Avril 2011 à Avril 2012 5 eNodeB Quelques mois avant les pays d’Europe du sud Plateforme Telecom


Télécharger ppt "Page R&D 1 LTE/SAE Evolved Packet System (EPS). Page Page 2 Evolution des usages en data Mobile."

Présentations similaires


Annonces Google