La présentation est en train de télécharger. S'il vous plaît, attendez

La présentation est en train de télécharger. S'il vous plaît, attendez

Des nouveaux programmes de l école primaire, et de leur influence sur l enseignement des mathématiques au collège...

Présentations similaires


Présentation au sujet: "Des nouveaux programmes de l école primaire, et de leur influence sur l enseignement des mathématiques au collège..."— Transcription de la présentation:

1 Des nouveaux programmes de l école primaire, et de leur influence sur l enseignement des mathématiques au collège...

2 Au centre de l activité mathématique : La résolution de problèmes

3 Plusieurs fonctions pour la résolution de problèmes Problèmes dont la résolution vise la construction dune nouvelle connaissance Problèmes destinés à permettre le réinvestissement de connaissances Problèmes plus complexes que les précédents dont la résolution nécessite la mobilisation de plusieurs catégories de connaissances. Problèmes centrés sur le développement des capacités à chercher : en général, pour résoudre ces problèmes, les élèves ne connaissent pas encore de solution experte. problèmes pour chercher

4 Caractéristiques du problème pour chercher Les situations peuvent être issues de domaines variés. Elles sont présentées sous des formes variées. Les élèves doivent pouvoir sapproprier facilement la situation et se représenter la tâche pour sy engager avec leurs connaissances antérieures. La difficulté doit se situer non dans la compréhension de la situation, mais dans les moyens de répondre à la question posée. Le problème peut se situer dans les domaines numérique, géométrique, logique, dans celui de la mesure ou dans plusieurs de ces domaines.

5 Le problème doit être consistant, cest-à-dire présenter une certaine résistance. Il ne doit pas donner lieu à une réponse qui résulte dun traitement immédiatement reconnu... Donner un problème de recherche, cest lancer un défi. Il est important que les élèves fassent leur le problème et quils aient envie de relever le défi. La validation de la solution doit être le plus possible à la charge des élèves.

6 Voici un jeu de cartes. Sur chaque carte est dessiné soit un carré,soit un triangle. La maîtresse montre les cartes. Je vais passer avec mon jeu de cartes et chaque groupe choisira trois cartes, sans les regarder, et les mettra dans cette boîte. La maîtresse demande à la classe le nombre de cartes quil y a dans la boîte. On est six groupes et trois cartes par groupe. Il y a donc 18 cartes répondent les élèves les plus rapides. Elle annonce : Jai compté le nombre total de côtés sur les cartes que vous avez choisies et jen trouve 60 (et elle écrit : 60 côtés au tableau). Vous devez trouver le nombre de cartes portant des carrés et le nombre de cartes portant des triangles.

7 POURQUOI ? Développement de la capacité de lélève à faire face à des situations inédites. Ce type dactivité contribue à léducation civique des élèves. Dans la résolution de ces problèmes, lélève prend conscience de la puissance de ses connaissances, même si celles-ci sont modestes. Valorisation des comportements et des méthodes essentiels pour la construction des savoirs : prendre des initiatives, être critique vis-à-vis de son travail, sorganiser, être méthodique, communiquer Les phases déchanges et de débats développent les capacités argumentatives

8 Les modalités de mise en œuvre du problème pour chercher Présentation du problème Temps de recherche personnelle puis en groupe Mise en commun, débat et validation Synthèse Rôle de l enseignant Prolongements

9

10 Le Calcul Lévolution des outils de calcul dans la société conduit à repenser les objectifs de son enseignement A lécole comme au collège les programmes distinguent trois types de calcul : mental, instrumenté et posé

11 Le calcul posé lobjectif essentiel réside dans la compréhension des techniques utilisées calculer des sommes et des différences de décimaux des produits de deux entiers naturels ou dun décimal par un entier, des quotients et restes dans le cas de la division euclidienne

12 La division : Lexemple suivant montre ce qui peut être attendu en fin décole primaire. La technique « dépouillée » de la division nest pas une compétence visée, ni à lécole primaire, ni au collège

13 Le produit de deux décimaux, comme le calcul dun quotient décimal, ne figure pas au programme du cycle 3. Cet apprentissage relève de la classe de Sixième : technique de calcul et sens (reconnaissance des situations où interviennent le produit de deux décimaux ou un quotient décimal).

14 Cependant, à lécole élémentaire, les élèves ont pu être confrontés à des problèmes du type calcul de "l'aire du rectangle", par exemple en ayant recours à des changements dunités ou à des procédures personnelles recherche du "prix de 3,5 kg de fromage à 12,60 le kg" où ils peuvent utiliser des procédures personnelles recherche de la valeur obtenue en partageant équitablement 50 entre 8 personnes : après avoir donné 6 à chacun, le reste peut être converti en centimes pour poursuivre le partage

15 Le calcul instrumenté Au cycle 3, la calculatrice doit devenir un outil de calcul banalisé. La meilleure solution consiste donc à la mettre à la disposition des élèves dès le début de lannée scolaire, au même titre que tous les autres instruments utilisés par les élèves, après avoir consacré une séance à une familiarisation

16 La calculatrice sera utilisée Comme outil de calcul Comme instrument dont on cherche à comprendre certaines fonctionnalités Comme support à lexploration de phénomènes numériques Comme source de problèmes et dexercices

17 instrument Il faudra bien sûr, travailler sur le fonctionnement même de cet instrument, sur ses capacités, ses modes d utilisation. apprentissage explicite Si son utilisation pour résoudre des problèmes ne fait pas lobjet dun apprentissage explicite, elle peut même être à la source de nouvelles difficultés.

18 La calculatrice, outil pour explorer des phénomènes numériques Les suites de nombres Sur les nombres entiers, on peut, par exemple, avancer ou reculer de 101 en 101 (en partant par exemple de 2 409) Les multiples dun nombre De la même manière, on peut poser des problèmes ou vérifier une hypothèse est un multiple de 4 ? - produire une suite de 4 en 4, à partir dun multiple connu - essayer datteindre par des produits dont le premier opérateur est toujours 4 Les grands nombres Que se passe-t-il si on coupe plusieurs fois de suite une feuille de papier en deux ? Combien de morceaux obtient-on ? Combien de fois faut-il couper pour avoir plus de morceaux ?

19 La calculatrice, support dexercices ou de problèmes Concours de calcul calculer vite mentalement, à la main ou à la calculatrice, 13,6 x 10 ; 4,5 + 5,5 etc…. calculer à la calculatrice le plus vite possible le quotient et le reste de 149 divisé par 7 Calculs dépassant la capacité daffichage de la calculatrice Calculer avec la calculatrice Calculer avec la calculatrice x 789 ou x 789

20 Décimaux : passer dun nombre à un autre Un premier nombre est affiché sur lécran de la calculatrice (par exemple, 4,785). Sans éteindre la calculatrice, ni effacer le nombre affiché, il sagit dobtenir laffichage de 4,805 en une seule opération. Multiplication sans [x] Il sagit, sans utiliser la touche [x] et un minimum dopérations sur la calculatrice, de calculer les produits suivants : 387 x 204 et 387 x 199. Trouver un quotient et un reste avec une calculatrice ordinaire Comment, avec une calculatrice qui ne possède pas de touche division euclidienne, obtenir la solution du problème suivant : le confiseur range chocolats dans des boîtes de 45 chocolats Combien de boîtes pleines obtient-il et combien reste-t-il de chocolats non rangés ? Résoudre un problème, en réfléchissant… et en expérimentant Avec la calculatrice, on ne peut utiliser que les touches [+], [x], [=] et 2. On affiche au départ le nombre 18. Sans effacer ni éteindre, comment peut-on atteindre le nombre 330, en utilisant le moins possible de calculs ?

21 Au cycle des approfondissements PROBLEME Calculatrice à disposition Calculatrice pour ceux qui ont des difficultés Calculatrice outil d investigation anticiper organiser Interpréter noter Contrôler

22 Le calcul Mental Automatisé ou réfléchi, le calcul mental doit occuper la place principale à lécole élémentaire et faire lobjet dune pratique régulière, dès le cycle 2 Une bonne maîtrise de celui-ci est indispensable pour les besoins de la vie quotidienne (que ce soit pour obtenir un résultat exact ou pour évaluer un ordre de grandeur). Elle est nécessaire également à une bonne compréhension de certaines notions mathématiques une pratique régulière du calcul mental réfléchi permet de familiariser les élèves avec les nombres et dapprocher (en situation) certaines propriétés des opérations

23 Le propre du calcul automatisé quil sagisse de lemploi dune calculette ou dun algorithme appliqué avec papier et crayon, est de délaisser lintuition des nombres, lordre de grandeur ; il met en œuvre un algorithme uniforme sur des chiffres et cest précisément le nœud de son efficacité. Le calcul mental nécessite, au contraire, une intuition des nombres (qui saffine avec lentraînement) ainsi quune part dinitiative et de choix. Il opère sur des nombres et permet denraciner lordre de grandeur, le sens des opérations et leurs propriétés (commutativité, associativité, distributivité)

24 Le calcul mental a une fonction sociale il est dabord un calcul dusage. Il sagit de mettre en place des moyens efficaces de calculer, utiles dans la vie courante, en labsence de supports ou dinstruments. Même si lusage de la calculette est de plus en plus répandu, il demeure nécessaire de savoir calculer sans elle, ou, à tout le moins, de pouvoir effectuer un calcul approché.

25 distinguer ce quil faut mémoriser ou automatiser (les tables, quelques doubles et moitiés, le calcul sur les dizaines et les centaines entières, les compléments à la dizaine supérieure…) ce quil faut être capable de reconstruire (et qui relève du calcul réfléchi) : idée de rendre plus simple un calcul, souvent en procédant par étapes plus nombreuses, mais en sappuyant sur ce qui est connu

26 Le calcul mental a également une fonction pédagogique. Dans les apprentissages mathématiques, il joue un rôle important pour la compréhension et la maîtrise des notions enseignées. Cinq pistes peuvent être distinguées

27 le calcul mental apporte souvent une aide à la résolution de problèmes le calcul mental permet aux élèves de construire et de renforcer leurs premières connaissances relatives à la structuration arithmétique des nombres entiers naturels la pratique du calcul réfléchi sappuie, le plus souvent implicitement, sur les propriétés des opérations et, en retour, en assure une première compréhension les premiers maniements des notions mathématiques sont le plus souvent fondés sur le recours au calcul mental. pour lessentiel, les compétences des élèves se construisent dans un domaine numérique où domine le calcul mental ; le calcul réfléchi nécessite lélaboration de procédures originales et, par là, contribue au développement des capacités de raisonnement des élèves

28 Il convient de faire fonctionner les notions et les outils mathématiques étudiés au cours des années précédentes dans de nouvelles situations, autrement quen reprise ayant un caractère de révision. En sixième, particulièrement, les élèves doivent avoir conscience que leurs connaissances évoluent par rapport à celles acquises à l école primaire.

29 démonstration La pratique de l argumentation pour convaincre autrui de la validité dune réponse, dune solution ou dune proposition ou pour comprendre un phénomène mathématique a commencé dès lécole primaire et se poursuit au collège pour faire accéder l élève à cette forme particulière de preuve quest la démonstration. Si, pour cet objectif, le domaine géométrique occupe une place particulière, la préoccupation de prouver et de démontrer ne doit pas sy cantonner. Le travail sur les nombres, sur le calcul numérique, puis sur le calcul littéral offre également des occasions de démontrer.

30 la recherche et la production dune preuve 2 étapes la mise en forme de cette preuve Essentiel Ne doit pas occulter la recherche Pas trop d exigences

31 L apprentissage d un langage Passer du Faire au « Faire faire » (Camarade, ordinateur...) Pas d introduction d emblée, mais selon les besoins Les notations sont à considérer comme des conquêtes de lenseignement et non comme des points de départ

32 Les écrits Ecrits de Recherche Ecrits de Référence Ecrits destinés à être communiqués et discutés

33 Plus que jamais, intéresser ! Des situations riches, des problèmes Toute acquisition doit être reprise, consolidée, enrichie... Travailler en spirale Travailler en spirale...


Télécharger ppt "Des nouveaux programmes de l école primaire, et de leur influence sur l enseignement des mathématiques au collège..."

Présentations similaires


Annonces Google