La présentation est en train de télécharger. S'il vous plaît, attendez

La présentation est en train de télécharger. S'il vous plaît, attendez

Groupe Microfluidique Mems et Nanostructure

Présentations similaires


Présentation au sujet: "Groupe Microfluidique Mems et Nanostructure"— Transcription de la présentation:

1 Groupe Microfluidique Mems et Nanostructure
La microfluidique, une science en devenir, quelques exemples d’expériences et d’applications Hervé Willaime Groupe Microfluidique Mems et Nanostructure UMR CNRS-ESPCI 7083 X-ENS-UPS Physique - 12 MAI 05

2 Plan Introduction Quelques notions de microfabrication
La fluidique à petite échelle à travers des expériences de laboratoire conclusion

3 Quelques repères 1976 : première imprimante à jets d’encre
1990 : premier chromatographe liquide (Manz et al) concept de mTAS (Manz, Graber, Widmer, Sens.Actuator, 1991) : Premiers systèmes élémentaire en microfluidique (micromixeurs, microréacteurs, système de séparation...) : Apparition de la «  soft lithography technology », qui a renforcé le domaine. Différents systèmes avec différentes technologies

4 La microfluidique est utilisée de façon croissante dans un grand nombre de domaines
- industrie alimentaire - chimie - Biotechnologie - industrie pétrolière - … Dans ces domaines, les systèmes microfluidiques de complexité variable sont nécessaires, et l’enjeu est de pouvoir répondre à la demande. Prévision d’une grande évolution de ses systèmes -> grand enjeu économique

5 Lois d’échelle

6 les transferts dans les réactions chimiques
(Source : C. Delattre, MIT, MTL) Les transferts thermiques sont plus faciles dans les systèmes Microfluidiques, et la sélectivité des processus est meilleure

7 Puce à ADN Les laboratoires sur puce De la société Agilent- Caliper Permettent l’identification d’un brin d’ADN grace à une séparation.

8 Les échelles sont bien adaptées à
la manipulation de certains objets...

9 la montre qui n’indique pas l’heure

10 Microfabrication Deux exemples.

11 Technologie verre silicium (verre)
Or Chrome Verre Verre Résine Or Chrome Verre Masque Or Chrome Verre Résine Chrome Résine Or Verre Canal Chrome Résine Or Verre Attaque HF Verre Canal

12 Technologie verre silicium (silicium et collage)
Résine Gravure Profonde DRIE Résine Aluminium Aluminium Silicium Silicium Collage anodique Verre Silicium Silicium Verre Microcanal Silicium

13 Technologie PDMS(soft lithography) (polydimethylsiloxane)
Monocouche Système de pompage externe Bicouche Pompage et actuation intégrée P

14 Comparaison des technologies
PDMS Biocompatible Peu coûteux, rapide à concevoir Courte durée de vie Absorbe solvant matériau mou : avantages et inconvénients Silicium/verre Rigide Géométrie bien contrôlée nombreux traitements de surface Compatible avec solvant

15 Un peu de mécanique des fluides en microfluidique

16 Equations de Navier-Stokes

17 Les nombre de Reynolds sont petits dans les microsystèmes
Re = Ul/n ~ l2 Equations de Stokes

18 L’approximation est acceptable dans la plupart des cas
Microhydrodynamique Régime de Stokes : les termes inertiels sont négligés L’approximation est acceptable dans la plupart des cas

19 Analogie avec l'électrocinétique
Un élément important : la résistance hydrodynamique Augmente,quand la taille du système diminue Analogie avec l'électrocinétique

20 LA MINIATURISATION BOULEVERSE LES EQUILIBRES
PHYSIQUES DE MANIERE SOUVENT INTERESSANTE Les imprimantes à jet d’encre 2 mm From C.J.Kim (UCLA) (1999)

21 À l ’aide de nombres sans dimensions
Analyse d ’un microjet À l ’aide de nombres sans dimensions Conclusion : le jet est laminaire (donc facilement contrôlable), les gouttes sont sphériques et la gravité est négligeable

22 Contrôle précis des gouttes
Gouttes de qq µm de diamètre Émises à 30kHz a b c Précision de volume d’une fraction de pL d grande résolution d’impréssion utile pour ‘spotter’

23 Déplacement de fluide Externe : pousse seringue, pression.
Pompage interne : Mécanique : microsystème, ou peristaltique Electroosmose…

24 Micropompe péristaltique

25 Pompe péristaltique (J. Goulpeau)

26 Electroosmose (E. Brunet) pour séparation électrophorétique

27 Le mélange

28 Le temps de diffusion pour un canal de 100µm de large (pour une molécule comme la fluoréscéïne) :
Ce temps peut être trop long en particulier pour faire plusieurs réactions chimiques sur la même puce

29 Le mélange Faible Reynolds, pas de répime turbulent, la diffusion est insuffisante Nécessité d’activer le mélange, plusieurs idées plus ou moins surprenantes : Mélange chaotique (nombreuses méthodes) Champ électrique, ultrason Membranes oscillantes Mélange intra-gouttes Bactéries avec flagelles.

30 Réduction de système macroscopique : géométrie Tesla, un système peu efficace
Ecoulement Mélange peu efficace dans le cas d’un canal microfluidique

31 Mélange peu éfficace Expérience faite par O Stern (2001)

32 Mélangeur ‘passif’ Stroock, A.D.; Dertinger, S.K.W.; Ajdari, A.; Mezic, I.; Stone, H.A. and Whitesides, G.M. Chaotic mixer formicrochannels. Science, 2002, 295,

33 Un mélangeur chaotique : le principe de base
Application de la perturbation Etirement de la ligne U Arrêt de la pertubation Repliement

34 Simulations numériques

35 Augmentation de la vitesse de mélange
Micromélangeur actif Augmentation de la vitesse de mélange 10 X 200 μm Eau + Glycerol + Fluorescéine Eau + Glycerol ~ 100 μm : Canaux d’actuation Flux de la perturbation Pression

36 Film A. Dodge : fréquence croissante

37 Langue de ‘calme’ dans un océan de chaos
F=L/Ltrian-1 AMPLITUDE FREQUENCY F. Okkels, P.Tabeling, Phys.Rev.Lett.,92, 3 (2004)

38 Mélange en gouttes (D. Weitz, Harvard)

39 Les écoulements diphasiques
Quelques jeux de gouttes

40 En écoulement macroscopique : structures typiques obtenues
Dans la plupart des cas, pas d’effet des propriétés de mouillage des surfaces Peu de sensibilité aux modes d’injections des fluides.

41 Système expérimental Stereomicroscope To a syringe pump

42 Diagramme d’écoulement :
Eau dans huile (avec du tensioactif : span 80) eau eau Tetradecane + span 80

43 Comparaison sans et avec span 80

44 Ces résultats montrent l’importance des forces capillaires dans les écoulements diphasiques en microfluidique comme le montre le nombre capillaire Ca ~ mU/g ~ l2 La maîtrise des propriétés de mouillage permet de contrôler les structures que l’on cherche à obtenir dans les écoulements diphasiques.

45 Anna,Bontout, Stone, Formation of dispersins using flow-focussing in microchannels, Appl. Phys. Lett (2003),

46 Division de gouttes (D. Weitz, Harvard)

47 Système expérimental : principe du forçage
Canal d’écoulement P PDMS PDMS VERRE Actuation

48 A très fort couplage Le système répond à la fréquence de forçage.
Intérêt pour les applications

49 Contrôle de la taille des gouttes
Film ralenti 3 fois

50 Tout n’est pas toujours si simple
Accrochage de fréquences pour certaines gammes de fréquences de forçage : réponse périodique

51

52 Spectres typiques Régime chaotique Fréquence naturelle d’émission
Freponse = F forçage Freponse = F forçage/4 Régime chaotique

53 Langues d’Arnold

54 Langues d’Arnold

55 Escalier du diable Réponse du système en fonction du forçage
couplage fort Réponse du système en fonction du forçage

56 Escalier du diable Winding number : average phase change per iteration

57 Réponse à un forçage externe
synchronisation Fréponse/Fforçage = m/n (nombre rationnel) Couplage faible Fréponse/Fforçage nombre irrationnel : régime quasipériodique ou chaotique Couplage fort Synchronisation sur la fréquence de forçage : Fréponse = Fforçage

58 Rustem F. Ismagilov, Univ. Chicago

59 Conclusion

60 LES SYSTEMES MICROFLUIDIQUES SONT
INTERESSANTS, PROBABLEMENT POUR 3 RAISONS - La miniaturisation bouleverse les équilibres physiques de manière souvent intéressante - Microfluidique et parallélisme engendrent, lorsqu’ils sont associés, des systèmes parfois étonnants - Il est nécessaire de maitriser les écoulements pour élaborer des laboratoires sur puce

61 Miniaturization of electrophoretic separation systems Caliper

62 MICROFLUIDIQUE ET PARALLELISME DONNENT LIEU A
DES SYSTEMES PARFOIS ETONNANTS la cristallisation des protéines Les opérations élémentaires Chargement, compartimentage Mélange, purge. (Quake et al, Science 2002)

63 lab-on a chips, etc... valves enzyme base pump

64 An elementary Lab-on-a-chip LAB-ON A CHIP BIOSITE DIAGNOSES HEART ATTACK WITHIN 10 MN

65


Télécharger ppt "Groupe Microfluidique Mems et Nanostructure"

Présentations similaires


Annonces Google