La présentation est en train de télécharger. S'il vous plaît, attendez

La présentation est en train de télécharger. S'il vous plaît, attendez

Ligne dAssemblage Professeur Amar Ramudhin, ing. Ph.D.

Présentations similaires


Présentation au sujet: "Ligne dAssemblage Professeur Amar Ramudhin, ing. Ph.D."— Transcription de la présentation:

1 Ligne dAssemblage Professeur Amar Ramudhin, ing. Ph.D

2 Introduction Une ligne dassemblage consiste en un nombre de station en série Types de ligne dassemblage –Ligne dédiée à une famille de produit Un modèle à la fois sur la ligne –Ligne multi-modèles: Plusieurs produits en même temps sur la ligne –Chaîne de montage synchronisée (Paced assembly line) à vitesse constante, c.à.d chaque travaille C unité de temps Le système de manutention va envoyer le produit à la station suivante même si lopération nest pas complétée… Le temps de cycle C doit être ajusté pour tenir compte des variabilités des temps dopérations –Chaîne de montage non synchronisée (Unpaced assembly system) Durée de tâches variables

3 Exemple Ligne dassemblage Encours Introduction Des Pièces

4 Ligne dassemblage Flexible m1 m2 mn m1 m2 mn m1 m2 mn …. Plusieurs stations en parallèle à chaque étape Les commandes sont assignées à une station en fonction des besoins de la tâche et de lencours aux stations Système de manutention automatisée

5 Formulation Mathématique Taux de Production: P unité par période Temps de Cycle C= 1/P Note: si on a m lignes en parallèle alors –C=m/P Contrainte de Préséance: –IP = {(u,v) : tâche u doit immédiatement précéder v} Restrictions de zonage – ZS = ensemble de tâches qui doivent être assignées à la même station –ZD = ensemble de tâches qui ne peuvent être assignées à la même station Variable binaire Xik –Prend la valeur 1 si la tâche i est assignée à la station k Soit K le nombre maximale de station dans la ligne Afin de minimiser le temps mort sur les stations on va forcer les tâches dans les stations ayant les numéros les plus bas Soit cik, le coût dassigner la tâche i dans la station k. La structure de cik est telle que: –Nc ik c i,k+1, pour k=1,…K-1

6 Modèle de Programmation Mathématique Temps de Cycle Contraintes Assignation des tâches Contrainte de préséance Contraintes de Zonage

7 Modèle de Programmation Mathématique Contrainte de préséance –Exemple: 3 stations; – la tâche 2 doit précéder la tâche 3 X 31 X 21 X 32 X 21 + X 22 X 33 X 21 + X 22 + X 23 Contrainte de zonage 5) est non linéaire –Agréger les tâches qui doivent être faites à une même station en une super tâche –Élimine la contrainte 5) Nombre min de station: – T/C –Où T = t i

8 Solutions Heuristiques En pratique on veut trouver une solution à un des problèmes suivants: –Étant donné un temps de cycle trouver le nombre minimum de station (ou de personnes) sachant pour chaque tâche son temps dopération, ses préséances et les restrictions de zonage –Étant donné un nombre de station, trouver le temps de cycle minimal

9 Notations C – temps de cycle S k – ensemble de tâches assignées à la station k=1,…,M ti – temps dopération de la tâche i, i=1,…,N T – temps total disponible pour la séquence dassemblage requis Q – La quantité requise –C = T/Q Restrictions: –1 M N : Moins de stations que de tâches –ti C Efficacité de la ligne: Efficacité de la station k

10 Algorithme de Helgeson- Birnie (HB) Assigner les opérations aux stations selon leurs poids de positionnement en considérant les contraintes de préséance, de zonage et de temps. Poids de positionnement dune tâche i: –Somme des temps de i et de toutes les tâches qui succèdent i – e.g poids tâche 1 = = 28

11 Autres règles On peut utiliser les règles suivantes au lieu du poids de positionnement dans lassignation des opérations au stations: –+ grand nombre des successeurs dun nœud; –+ grand nombre de successeurs immédiats; –+ grand poids des successeurs immédiats; On peut combiner des règles: –Exemple: + grand poids en premier. Si égalité choisir lopération ayant le plus grand temps dopération

12 Exemple Temps de Cycle: 21

13 Exemple: Résolution à laide de la procédure de HB - Temps de cycle :21 - Nbre min de station : 105/21 = 5 - Efficacité de la ligne: (105)/(6*21) = Éfficacité de la 6 ième station 2/21 =.095

14 Exemple avec Temps de Cycle de 22 Station 1 –Operations: 1 – –Temps total: 21 Station 2 –Operations: –Temps total: 21 Station 3 –Operations: –Temps total: 22 Station 4 –Operations: –Temps total: 21 Station 5 –Operations: –Temps total: 20 Éfficacité ?

15 Approche par Région Le problème avec lapproche précédente –une tâche ayant un poids élevé peut savérer moins critique quune tâche ayant beaucoup plus de successeurs mais avec des temps dopérations moindre Approche par région tends à corriger cette situation

16 Approche par Région 1.Développer le réseau de préséance 2.Assignation des régions de préséance: Redessiner le réseau en assignant les tâches aux régions de préséance les plus éloignés 3.Dans une région lister les tâches en ordre décroissant des durées Laisse les petites tâches pour la fin 4.Assigner les tâches en suivant les règles suivantes (en considérant les autres contraintes de zonages, etc.) Les tâches des régions les plus à gauche en premier À lintérieur dune région, la plus grande tâche en premier 5.À la fin dune assignation pour une station, décider si lutilisation est acceptable Si non parmi lensemble des tâches qui reste dont les prédécesseurs ont été assignés, trouver le sous-ensemble des tâches dont les prédécesseurs sont dans des régions plus à gauche que les tâches assignées. Inter changer les tâches et déterminer sil y a augmentation de lutilisation. Si oui la nouvelle assignation est finale

17

18 Ligne dassemblage mixte Lorsque différents produits sont assemblés sur une même ligne on peut assumer quil y a une grande similarité entre les produits –Plusieurs tâches communes Construire le réseau combiné

19 Produit 1 Produit 2 Réseau combiné 4 3

20 Résultat avec le réseau Combiné En appliquant lalgorithme de HB avec C=10 sur le réseau combiné on a le résultat suivant: 1,4,5 7 8, ,3 9 10,7,11 10 tâches temps ,9 70 2,3 9 7,11 5 tâches temps 1,4, ,7,11 10 tâches temps Produit 1: Efficacité: (22*100)/(5*10) = 44% Produit 2: Efficacité: (30*100)/(5*10) = 60% Efficacité: (39*100)/(5*10) = 78%

21 Procédure améliorée En réalité, il y a seulement un produit différent par poste –Donc diminution de lefficacité Solution logique Accumuler les temps des tâches assignées par produits séparément

22

23 Autre méthode pour ligne multi-modèle Posons où est la proportion du modèle j à produire Utiliser le temps moyen pour construire la ligne. Soit –dj : demande du modèle j –Demande totale: D= j dj –T: Horizon de planification – : temps de lopération i du modèle j

24 Lissage et Ordonnancement des modèles dune ligne mixte Le temps de cycle minimal est: –Où est lensemble de tâches assignées à la station k Le temps dintroduction idéal pour la nième unité du modèle j est On peut trouver la séquence mixte en fusionnant les temps de début des séquences individuelles en une seule séquence non avec des temps de début non-décroissant. Les unités de production sont introduites dans la chaîne à chaque c unité de temps.

25 Exemple T = 4 heures (240 mins) 3 modèles de voitures: –10 sedan (S) –6 hachback (H) –4 station wagon (W) Total de 20 voitures C = 240/20 = 12 minutes Temps dintroduction en considérant les modèles séparément: –Sedan: 240/10 : à chaque 24 minutes Temps dentrée: 0,24,48,72,96,120,144,168,192,216 –Hachback: 240/6 : à chaque 40 minutes Temps dentrée: 0,40,80,120,160,200 –Station wagon: 240/4 : à chaque 60 minues Temps dentrée: 0,60,120,180

26 Résultat Combiner les 3 vecteurs en un vecteur –en donnant priorité au modèle ayant la plus grande demande (en cas dégalité) S: 0,24,48,72,96,120,144,168,192,216 H: 0,40,80,120,160,200 W: 0,60,120,180 Séquence résultants: –S-H-W-S-H-S-W-S-H-S-S-H-W-S-H-S-W-S- W-S

27 Temps Stochastique ti est normalement distribué avec moyenne μ ti et variance V(ti) De la loi centré réduite on a: –t = μ t + z(σ t ) Donc pour une station, avec une probabilité α, la valeur du temps t est

28 Exemple avec α=99.4% α=99.4% et donc z=2.5 Tâches en ordre décroissant de positionnement: B – A – C – D – E – F - G

29 Solution Déterministe 3 Stations

30 Solution Stochastique 5 Stations


Télécharger ppt "Ligne dAssemblage Professeur Amar Ramudhin, ing. Ph.D."

Présentations similaires


Annonces Google