La présentation est en train de télécharger. S'il vous plaît, attendez

La présentation est en train de télécharger. S'il vous plaît, attendez

Résolution de problèmes M2 Alt UE7 2011-2012. Résolution de problèmes Résoudre des problèmes fait partie de l'activité mathématique C'est dans l'action.

Présentations similaires


Présentation au sujet: "Résolution de problèmes M2 Alt UE7 2011-2012. Résolution de problèmes Résoudre des problèmes fait partie de l'activité mathématique C'est dans l'action."— Transcription de la présentation:

1 Résolution de problèmes M2 Alt UE

2 Résolution de problèmes Résoudre des problèmes fait partie de l'activité mathématique C'est dans l'action que l'on apprend : l'apprentissage se fait au moins en partie à travers les adaptations que les élèves vont devoir faire de leurs connaissances mathématiques pour les mettres en oeuvre dans les problèmes

3 Différents types de problèmes Problèmes de découverte : pour lequel l'élève va devoir construire une nouvelle méthode ou connaissance à partir (ou contre) ce qu'il sait déjà. Problèmes dapplication Problèmes dapprofondissement, de réinvestissement : ce type de problème nécessite de réunir conjointement plusieurs savoirs ou savoir-faire pour pouvoir le résoudre. Problèmes dévaluation Problèmes ouverts ou de recherche : ce type de problème est destiné à mettre lélève en situation de recherche et de développement de compétences dordre méthodologique.

4 Problèmes et opérations Les élèves rencontrent des situations additives (pour lesquelles l'addition est un outil de résolution), avant même de savoir poser une addition ex : compléter une collection pour réaliser une collection équipotente Souvent, résoudre un problème revient à choisir et à effectuer la ou les bonnes opérations (+, -, x, :) mais pas toujours...

5 Exemple de problème sans opération il suffit donc de prendre 4 bonbons pour être sûr d'en avoir au moins 2 de la même couleur Dans un bocal opaque il y a 5 bonbons rouges, 6 bonbons bleus et 8 bonbons jaunes. Combien de bonbons dois-je tirer au maximum pour être sûr d'en avoir au moins 2 de la même couleur ? on n'a pas fait d'opération, et pourtant les élèves répondront : = 19 bonbons ! pourquoi ?? on n'a pas fait d'opération, et pourtant les élèves répondront : = 19 bonbons ! pourquoi ??

6 Le contrat didactique Lâge du Capitaine … Une expérience maintenant célèbre de lIREM de Grenoble. On a proposé à des élèves de CE1 et CE2 le problème suivant : Sur un bateau il y a 26 moutons et 10 chèvres. Quel est lâge du capitaine ? 76% ont donné lâge du capitaine !

7 Le contrat didactique Réponse de Matthieu au problème : 36 ans Mère : tu as dix crayons dans la poche de ton short et dix crayons dans la poche de ta chemise. Quel est ton âge ? Mat : facile ! 20 ans. Mère : enfin Matthieu, quel âge as-tu ? Mat : en vrai, jai 6 ans. Mère : pourtant, tu as répondu que tu avais 20 ans ! Mat : oui, mais ton problème, cest du faux, cest comme un conte … quand cest du vrai, je nai pas besoin dun problème pour savoir mon âge … Père : jai 2000 F et Maman a 1000 F. Quel est mon âge ? Matthieu va chercher la calculatrice dans le cartable et répond :3000 ans

8 Le contrat didactique On peut se demander ce qui motive chez les enfants le choix dune opération : - Quel rôle jouent les mots de l'énoncé ? - Quelle est linfluence des apprentissages scolaires récents ? - Quel rôle joue la vraisemblance du résultat ? on va s'intéresser autant à l'exactitude de la solution proposée qu'à la procédure employée par l'élève : elle est révélatrice de ses connaissances

9 Procédures des élèves Un chien essaie de rattraper un renard. Le renard démarre avec 30 m d'avance sur le chien, et pendant que le chien fait un bond de 2 m, le renard, lui, fait un bond de 0,50 m. Trouve en combien de bonds le chien aura rattrapé le renard.

10

11 stratégie essai / erreur elle fait partie de la démarche scientifique stratégie essai / erreur elle fait partie de la démarche scientifique

12 Procédures des élèves Parmi les procédures utilisées par les élèves, certaines seront considérées comme plus expertes que d'autres, (et pas seulement en fonction de l'exactitude du résultat) : - suivant la rapidité et l'économie de la procédure - suivant les connaissances mathématiques mises en oeuvre - suivant l'interprétation et la cohérence du résultat obtenu

13 Procédures des élèves problème : 108 coureurs prennent le départ d'une course. Il y a beaucoup d'abandons. 85 coureurs seulement terminent la course. Combien de coureurs ont abandonné ?

14 utilisation d'un schéma et du groupement par 10 utilisation d'un schéma et du groupement par 10

15 utilisation d'un décomptage

16 utilisation d'un calcul réfléchi avec complément à la dizaine supérieure avec complément à la dizaine supérieure avec complément à la centaine supérieure avec complément à la centaine supérieure

17 utilisation d'une opération posée addition addition à trou soustraction

18 Problèmes et opérations on distingue 2 grandes catégories de problèmes en fonction des opérations qu'ils nécessitent : -problèmes additifs (addition et soustraction) -problèmes multiplicatifs (multiplication et division)

19

20 Problèmes additifs ADDITION Opération, transformation = ajout Aspect cardinal = réunion Aspect ordinal = surcomptage SOUSTRACTION Opération, transformation = retrait Aspect cardinal Aspect ordinal = décomptage AB a a+b A B ? ? b b - a

21 Evaluations en CE2 73% 30,5% 29,2%

22 Classification des problèmes additifs = Classification de Vergnaud Réunion de deux collections ou composition de mesures on peut rechercher : - la collection totale - une sous-partie de la collection connaissant le total on peut rechercher : - la collection totale - une sous-partie de la collection connaissant le total le premier de ces deux types de problèmes est le plus simple à résoudre pour les élèves

23 Classification des problèmes additifs Transformation détat dans un tel problème, on peut rechercher : - la situation finale - la transformation effectuée - la situation initiale dans un tel problème, on peut rechercher : - la situation finale - la transformation effectuée - la situation initiale

24 Annie avait 14 billes, elle en a gagné 7, combien en a­t­elle maintenant ? Annie avait 14 billes, elle a joué et elle en a maintenant 21. Que sest­il passé ? Annie a gagné 7 billes, elle en a maintenant 21. Combien avait­elle de billes avant le jeu ? ? ? ? Classification des problèmes additifs : trois exemples de transformations ces deux derniers types de problèmes sont plus difficiles à résoudre que le premier

25 Classification des problèmes additifs Comparaison On peut rechercher : - lun des deux états - la relation entre les deux états (combien X a-t-il de ± que Y ?) c'est le type de problème qui pose le plus de difficulté aux élèves On peut rechercher : - lun des deux états - la relation entre les deux états (combien X a-t-il de ± que Y ?) c'est le type de problème qui pose le plus de difficulté aux élèves

26 Classification des problèmes additifs Composition de transformations type de problème plus rare à l'école primaire

27 Des erreurs qui peuvent être liées à : Aux calculs à effectuer Au type de problème 73% 30,5% Réunion de deux collections ou composition de mesures ? 85 ? 108 Addition ou soustraction

28 Quelles sont les variables qui rendent ces problèmes plus ou moins complexes ? 1)On achète 3 chaises pour 45. Combien coûte une chaise ? 2)On achète 3 chaises pour 45 et 1 table pour 50. Combien a-t-on dépensé ? 3)On achète 3 chaises et une table pour 95, puis on rachète 2 chaises pour 30. Combien coûte une chaise ? une table ? 4)On achète une table et 2 chaises pour 80, puis 2 tables et 6 chaises pour 130. Combien coûte chaque meuble ?

29 Les difficultés peuvent être relatives à : Des facteurs « mathématiques » Relations entre les nombres Nombres en jeu Grandeurs en jeu Dautres facteurs Place de la question Complexité linguistique Chronologie de lénoncé Nombre détapes pour résoudre le problème et gestion des résultats intermédiaires Interprétation sociale/subjective de lénoncé.

30 Des problèmes « faciles » ou non ? Posés à lentrée en CE Soustraction ou 210 avec ou sans unités : 59,2% - Autres réponses : 36,9% (démarche additive : 18,9%) - 19 : 27,3% - Autre : 68,4%

31 et dans les manuels ? rechercher les problèmes additifs dans les manuels de l'école élémentaire -comment sont-ils signalés ? -où sont-ils placés ? -quelles catégories de problèmes trouve-t-on ? -quelle progression entre les différents problèmes ?

32 dans les manuels : on trouve plutôt des "problèmes" d'entraînement liés aux opérations mais pas de vrais problèmes la progression se fait par rapport aux opérations, et aux nombres mais pas par rapport au type de problème dans la plupart des cas (réunion, transformation, comparaison ne sont pas forcément dans cet ordre voire pas tous représentés) on trouve beaucoup plus de problèmes de transformation


Télécharger ppt "Résolution de problèmes M2 Alt UE7 2011-2012. Résolution de problèmes Résoudre des problèmes fait partie de l'activité mathématique C'est dans l'action."

Présentations similaires


Annonces Google