La présentation est en train de télécharger. S'il vous plaît, attendez

La présentation est en train de télécharger. S'il vous plaît, attendez

Montage préparé par : André Ross Professeur de mathématiques Cégep de Lévis-Lauzon André Ross Professeur de mathématiques Cégep de Lévis-Lauzon Chaînes.

Présentations similaires


Présentation au sujet: "Montage préparé par : André Ross Professeur de mathématiques Cégep de Lévis-Lauzon André Ross Professeur de mathématiques Cégep de Lévis-Lauzon Chaînes."— Transcription de la présentation:

1 Montage préparé par : André Ross Professeur de mathématiques Cégep de Lévis-Lauzon André Ross Professeur de mathématiques Cégep de Lévis-Lauzon Chaînes de Markov et systèmes déquations Chaînes de Markov et systèmes déquations

2 Introduction Nous présentons ici les notions de chaîne de Markov et de point invariant dune telle chaîne. Nous utilisons la mise en situation que vous trouverez dans le volume à la page 40.

3 Supposons que, pour le cours que vous suivez actuellement, il y a deux livres sur le marché; représentons-les par A et B. Supposons de plus que 50% des professeurs qui donnent présentement ce cours se servent du livre A et 50% se servent du livre B. Mise en situation La répartition du marché entre ces deux livres peut être représentée par un vecteur probabilité : w 0 = (0,5 0,5) ou par un diagramme comme celui ci- contre.

4 Supposons de plus que les probabilités de changement détat sont celles du tableau ci-dessous. Évolution du marché On peut déterminer la répar- tition du marché pour les années suivantes en ajoutant de nouvelles branches à chaque extrémité du diagramme. SS

5 Vecteur probabilité Définitions On appelle vecteur probabilité toute matrice 1xn constituée déléments non négatifs dont la somme est égale à 1. Matrice de transition On appelle matrice de transition toute matrice carrée dont les éléments sont non négatifs et telle que la somme des éléments de chaque ligne est égale à 1. (0,2 0,4 0,4) est un vecteur probabilité. est une matrice de transition.

6 Représentons les probabilités de change- ment détat par une matrice de transi- tion. Matrice de transition On peut déterminer la répartition du marché pour les années suivantes par des produits de matrices. w0P w0P = w1w1 w1P w1P = w2w2 Remarque Lassociativité du produit des matrices donne : w 2 = w 1 P = (w 0 P )P = w 0 P 2 SS

7 Le tableau ci-contre donne la répar- tition du marché après n changements détat. Évolution du marché Il semble quà long terme le produit A occupera 25 % du marché et le produit B 75 %. Autrement dit, il sagit de savoir sil existe un vecteur probabilité w = (t 1 t 2 ) tel que : Le marché va-t-il vraiment se sta- biliser avec le temps?

8 On a une équation matricielle, mais elle nest pas sous la forme qui permet de la résoudre par la méthode de Gauss- Jordan. Utilisons les propriétés pour la transformer. Établir léquation matricielle, produit par lidentité;, en regroupant;, par la distributivité;, par transposition. SS, par laddition des matrices. SS

9 Établir léquation matricielle, transposition du produit; On a manifestement deux contraintes équivalentes et lune delles peut être éliminée. Cependant, on a une autre contrainte. En effet, puisque le vecteur cherché est un vecteur probabilité, on doit avoir : t1 t1 + t2 t2 = 1 En substituant à la première contrainte, on a donc : SSS

10 Solution Il faut résoudre le système déquations : On trouve donc : (t 1 t 2 ) = (0,25 0,75) dont la matrice augmentée est : En résolvant, on trouve : La solution du système déquations confirme quà long terme, le livre A aura 25 % du marché et le livre B 75 %. S S

11 Point invariant Un vecteur probabilité w est appelé point invariant dune chaîne de Markov si w = w P, où P est la matrice de transi- tion de la chaîne. Point invariant dune chaîne de Markov 2.Utiliser le produit matriciel pour établir les équations du point invariant et substituer à la première équation la ligne représentant léquation t 1 + t t n = 1. Procédure pour trouver le point invariant 1.Établir la matrice de transition. 3.Résoudre le système déquations. 4.Interpréter le résultat selon le contexte. S

12 Part de marché Trois compagnies de téléphone se disputent le marché. Une enquête a permis de déter- miner le diagramme de tran- sition ci-contre. a)Construire la matrice de transition. d)Trouver le point invariant. e)Interpréter le résultat selon le contexte. b)Trouver la répartition du marché dans un mois. c)Trouver la répartition du marché dans deux mois. Actuellement, létat du marché est donné par : (0,3 0,4 0,3) S

13 Solutions a)La matrice de transition est : d)Le point invariant est : e)Cela signifie quà long terme, la compagnie Telquel aura 36,25% du marché, ComTel 33,75% et PlacoTel 30%. b)La répartition du marché dans un mois sera : c) La répartition du marché dans deux mois sera : (0,35 0,35 0,30) (0,36 0,34 0,30) (0,3625 0,3375 0,30) SSSS

14 Application à la génétique Les chaînes de Markov sont très utiles dans le domaine de la génétique. Dans létude de croisement de porcs, on a constaté que certains avaient un poil long et que dautres avaient un poil court. La longueur du poil est contrôlée par une paire de gènes que lon notera A et a. Il y a trois types de génotypes possibles, soit AA, Aa (qui est le même que aA) et aa. Le gène A domine le gène a. On dira donc que le génotype AA est dominant, que le génotype Aa est hybride et que le génotype aa est récessif. Les porcs du type AA et Aa ont le poil long tandis que celui de type aa ont le poil court.

15 Application à la génétique a)Si un troupeau est constitué de 45% de porcs de type AA, de 15% de porcs de type Aa et de 40% de type aa, quel devrait être la distribution des génotypes suite à un croisement avec un porc dominant. Si on croise un porc quelconque avec un porc dominant, le tableau suivant décrit la matrice de transition à chaque croisement. S S b)Déterminer létat stable de ce processus.

16 Application à la génétique c)Si on croise les porcs uniquement avec des porcs hybrides, la matrice de transition devient Quel serait alors létat stable dun troupeau à long terme?

17 Solutions a) (0,525 0,475 0). Tous les porcs auront le poil long. 52,5 % auront le génotype AA et 47,5% auront le génotype Aa. b) Létat stable sera (1 0 0), ce qui signifie quà long terme tous les porcs auront le génotype AA. c) Létat stable sera (0,25 0,5 0,25), ce qui signifie quà long terme 25% des porcs auront le génotype AA, 50% le génotype Aa et 25% le génotype aa.

18 Application au comportement On place une souris dans le compartiment A du labyrinthe illustré. Chaque fois quelle en- tend une sonnerie, apeurée, elle change de compartiment en choisissant au hasard une des portes du compartiment où elle se trouve. a)Après trois périodes de temps, quelle est la probabilité que la souris se retrouve à nouveau dans le compartiment de départ? b)Sur une longue période de temps, quelle sera la distribution des visites dans chaque compartiment?

19 Sourissimo a)Les vecteurs probabilité pour les trois périodes sont : ( ), (0, ,3333 0,3333) et (0 0,6666 0, , ) Il est impossible que la souris soit dans le compartiment A après trois périodes, sauf si elle y fait un infarctus en entendant la sonnerie lors dune de ses visites précédentes. b)Le point invariant est : (0,1250 0,3750 0,2499 0,2499) À long terme, la souris devrait être dans la case A 12,5% des fois, dans la case B 37,5%, dans la case C 24,9% et dans la case D 24,9% des fois.

20 Bibliographie ROSS, André (2003). Algèbre linéaire et géométrie vectorielle avec applications en sciences de la nature, Québec, Griffon d argile, 445 p. ROSS, André (2003). Algèbre linéaire et géométrie vectorielle avec applications en sciences humaines, Québec, Griffon d argile, 410 p. Exercices additionnels Algèbre linéaire et géométrie vectorielle avec applications en sciences de la nature, Section 2.4, p. 53 numéros 2 à 11 Algèbre linéaire et géométrie vectorielle avec applications en sciences humaines, Section 2.4, p. 53 numéros 2 à 18


Télécharger ppt "Montage préparé par : André Ross Professeur de mathématiques Cégep de Lévis-Lauzon André Ross Professeur de mathématiques Cégep de Lévis-Lauzon Chaînes."

Présentations similaires


Annonces Google