La présentation est en train de télécharger. S'il vous plaît, attendez

La présentation est en train de télécharger. S'il vous plaît, attendez

Multiplication des décimaux Quelles activités pour donner du sens ? Nancy 2004.

Présentations similaires


Présentation au sujet: "Multiplication des décimaux Quelles activités pour donner du sens ? Nancy 2004."— Transcription de la présentation:

1 Multiplication des décimaux Quelles activités pour donner du sens ? Nancy 2004

2 Le concept d'après Gérard Vergnaud … les obstacles que ce concept permet de dépasser …les procédures que ce concept permet de remplacer avantageusement …l'ensemble des problèmes qui peuvent être traités en utilisant ce concept …l'ensemble des images mentales …des définitions, des propriétés …un langage : signes, syntaxe, vocabulaire …des savoir-faire, des techniques Un concept se caractérise par …

3 Le champ conceptuel des structures multiplicatives Cest lensemble des situations dont le traitement implique la mobilisation du concept, de ses propriétés, et procédures qui en découlent, langage et symboles qui y sont associés. Multiplication, division, proportionnalité relèvent du même champ.

4 Typologie simplifiée d'après Gérard Vergnaud Proportionnalité simple n fois plus, n fois moins Produits de mesures décimau x rationnel entier ordin al mesure cardinal

5 Trois Activités De lor noir à lor pur Des tablettes de chocolat La plus grande aire

6 De lor noir à lor pur

7 Énoncé Phase 1 : Déterminer les prix de 22,5 L puis de 55,25 L de gasoil à 0,84 le Litre. Phase 2 : Déterminer les prix de 0,250 kg, puis de 1,800 kg de bonbons à 8,96 le kg. Phase 3 : Déterminer la masse de 0,789 m puis de 3,162 m dune chaîne en or, sachant quun mètre de cette même chaîne pèse 2,9425 kg

8 Déroulement phase 1 Les élèves recherchent le problème individuellement, la calculatrice est autorisée. Ce travail est suivi dune mise en commun qui vise à échanger les procédures sans en privilégier aucune. Les solutions attendues sont des solutions personnelles basées sur la linéarité ( 22,5 L = 22 L +1/2 L).

9 Déroulement phase 2 La recherche et la mise en commun seffectue sur le même mode. Les solutions attendues sont toujours des solutions personnelles, mais la recherche du prix de 1,800 kg impose de ne plus recourir uniquement au partage en 2. Cest la mise à disposition de la calculette qui peut favoriser lapparition de la multiplication.

10 Déroulement phase 3 Les nombres sont choisis pour que les procédures par linéarité deviennent plus lourdes. On peut déterminer la masse de 0,789 m : En cherchant dabord la masse dun mm, puis celle de 789 mm En cherchant celle de 7dm, de 8cm, de 9mm puis celle de 7dm + 8cm+ 9mm En multipliant par 0,789.

11 Synthèse de lactivité Le côté économique de la multiplication est mis en évidence. Le décalage de la virgule dans un produit de décimaux peut être justifié en sappuyant sur un changement dunité.

12 Des tablettes de chocolat

13 Énoncé Des enfants disposent de tablettes de chocolat qui pèsent 2,52 hg. En voici une : Masse nette : 2,52 hg

14 Phase 1 Anne a mangé une tablette Benoît a mangé 2 fois plus quAnne Caroline a mangé 4/7 de tablette Denis a mangé 0,7 tablette Émilie a mangé 2,36 tablettes Découper et coller la part de chacun. Combien pèse-t-elle ? Indiquer comment faire pour calculer.

15 Phase 2 Farid a mangé 2,7825 tablettes Combien pèse sa part? Indiquer comment faire pour calculer.

16 Déroulement phase 1 Les élèves disposent dun réseau de droites parallèles et de rectangles en papier symbolisant les tablettes. Ils travaillent par 2, mais la production est individuelle. Une mise en commun est faite à lissue de cette phase. (aucune procédure nest privilégiée). Une première synthèse rappelle comment prendre une fraction de….

17 Déroulement phase 2 Le recours au dessin nest plus possible. Mais les procédures sont réutilisables : On peut considérer 2,7825 : Comme 2 + 7/10 + 8/ / /10000 Comme /10000 Comme 27825/10000 Comme un nombre en écriture décimale

18 Synthèse Le côté économique de lutilisation de la touche est mis en évidence. Léquivalence des procédures est montrée et la multiplication est institutionnalisée. Le décalage de la virgule dans un produit de décimaux est justifié en sappuyant sur le fait que tout décimal est une fraction.

19 La plus grande aire rectangle n°2 rectangle n° 1 carré rectangle n°3 rectangle n°4rectangle n°5 rectangle n°6

20 Énoncé Phase 1 : sur une feuille de papier millimétré, dessiner six rectangles dont le périmètre est 10 cm. Phase 2 : Déterminer laire en cm² des 7 figures sélectionnées.Les classer par aire de la plus petite à la plus grande.

21 Déroulement phase 1 La contrainte davoir à dessiner 6 rectangles impose dexprimer certaines dimensions sous forme décimale. Les élèves commencent par essayer des dimensions entières, puis utilisent les demi-centimètres. Pour beaucoup le passage à dautres dimensions décimales constitue un obstacle.

22 Déroulement phase 2 Entre les 2 phases, 7 figures daires proches ont été sélectionnées par le professeur. Le travail est dabord individuel. Sur papier millimétré. La confrontation des classements se fait par 2. La mise en commun porte sur la détermination des aires. Les rectangles sont agrandis et projetés à laide dun rétroprojecteur.

23 Déroulement phase 2 Différentes procédures possibles : Le comptage des cm² et des mm² La multiplication de 2 entiers (après conversion des cm en mm). La multiplication de 2 décimaux. Le comptage des cm² puis des mm² peut induire une conception du décimal comme étant 2 entiers accolés : il est nécessaire de soumettre à la comparaison un rectangle 2,9 x 2,1 daire 6,09 cm²

24 Synthèse de lactivité Le côté économique de la multiplication est mis en évidence. La formule de laire du rectangle est institutionnalisée. Le décalage de la virgule dans un produit de décimaux peut être justifié en sappuyant sur le changement dunité.

25 Conclusion Les activités proposées ici demandent des connaissances préalables : Sur la proportionnalité; sur la notion de fraction, de décimal; sur la notion daire. Dans une progression de sixième, ces situations ne peuvent sinscrire que tard dans lannée.

26 Concertation de mathématiques Lécriture décimale… La fraction quotient… Dabord la fraction partage… La droite graduée… Et la multiplication de deux décimaux après les vacances de Pâques ! ! !

27 Daprès le travail mené à lIREM de Lyon B Anselmo M Bonnet G Combier J Latour P Planchette


Télécharger ppt "Multiplication des décimaux Quelles activités pour donner du sens ? Nancy 2004."

Présentations similaires


Annonces Google