La présentation est en train de télécharger. S'il vous plaît, attendez

La présentation est en train de télécharger. S'il vous plaît, attendez

APA 2514 Exercices trigonométrie, Vecteur, 1 ière condition déquilibre 2 ième condition déquilibre.

Présentations similaires


Présentation au sujet: "APA 2514 Exercices trigonométrie, Vecteur, 1 ière condition déquilibre 2 ième condition déquilibre."— Transcription de la présentation:

1 APA 2514 Exercices trigonométrie, Vecteur, 1 ière condition déquilibre 2 ième condition déquilibre

2 Nomenclature

3 Définition dangle

4 Nomenclature Définition dangle

5

6 Trigonometrie des angles droits

7 Triangle rectangle Un échelle de 17 m est appuyée sur un mur dont la base de léchelle est à 8 m. À quelle hauteur atteindra léchelle?

8 Triangle rectangle Un échelle de 17 m est appuyée sur un mur dont la base de léchelle est à 8 m. À quelle hauteur atteindra léchelle? h = 15 m

9 Triangles quelconques ? Rappel : somme des angles dun triangle Rappel :

10 Triangles quelconques Loi du Cosinus

11 TROUVEZ LA RÉSULTANTE? Deux personnes tirent une boîte se reposant sur une surface sans frottement. Une personne tire avec une force de 10 N au nord. L'autre personne tire avec une force de 15 N à l'ouest. Trouvez la grandeur et la direction de la résultante en utilisant lapproche algébrique.

12 Solution algébrique Pour trouver la résultante algébriquement, esquissez les vecteurs. Construisez une triangle en plaçant la tête d'un vecteur à la queue de l'autre. Puis, compléter le triangle en dessinant la résultante par une droite de l'origine à la tête du vecteur déplacé. Voir le diagramme suivant :

13 Solution algébrique A = tg -1 (10 N / 15 N) = 33.6 o ou par rapport à laxe directeur 180 – 33.6 = o R 2 = (10 N) 2 + (15 N) 2 = 100 N N = 325 N R = 18 N 10N Nord Ouest Résultante

14 PROBLÈME 2 Résoudre un vecteur en deux composantes perpendiculaires de force de 100 N à 40 0 vers le haut de l'axe des abscisses positifs. Déterminez les composants horizontaux et verticaux de cette force graphiquement et algébriquement.

15 Solution algébrique Trouver les composants du vecteur algébriquement : 1.Esquissez le vecteur. 2.Tirez une perpendiculaire de la tête du vecteur à un de l'axe deux. 3.Employez les définitions de base de la trigonométrie pour trouver les composants.

16 Solution algébrique sin 40 0 = Fy / 100 N Fy = (100 N) sin 40 0 = (100 N) (0.643) = 64.3 N cos 40 0 = Fx / 100N Fx = (100 N) (.766) = 76.6 N Trouvez les composantes vertiacale (y) et horizontale (x)

17 FACTEURS IMPORTANTS La résultante maximum se produit quand l'angle entre les deux vecteurs est 0 0. Quand l'angle entre les deux vecteurs est 0 0 la grandeur de la résultante est simplement laddition arithmétique des deux vecteurs. La résultante minimum se produit quand l'angle entre les deux vecteurs est Quand l'angle entre les deux vecteurs est la grandeur de la résultante est simplement lsosutraction arithmétique des deux vecteurs.

18 Problème 1 Calculez la résultante des cinq vecteurs (A,B,C,D,E) avec les angles a, b, c, d et e au point 0. Utilisez la méthodes des composantes. A= 19 et a=0° B= 15 et b=60° C= 16 et c=135° D= 11 et d= 210° E= 12 et e = 270°

19 Solution(1) VecteursComposante horizontale Composante verticale A190 B15 cos 6015 sin 60 C-16 cos4516 sin 45 D-11 cos 30-11sin 30 E Ax By Bx Cy Cx Dy Dx Ey a=0° b=60° c=45° d=30° e=90°

20 Solution(1) Ax By Bx Cy Cx Dy Dx Ey a=0° b=60° c=45° d=30° e=90° R Résultante: Orientation:

21 Problème 2 Trouvez la résultante R des deux vecteurs suivants: A= 8 avec l angle directeur de 57° par rapport à lhorizontale, B=5 avec l angle directeur de 322° par rapport à lhorizontale.

22 Solution 2 VecteursComposante horizontale Composante verticale A8 cos 57° (4.35) 8 sin 57° (6.71) B5 cos 38° (3.94) -5 sin 38 ° (-3.07) R 9.04 θ23.7 ° R

23 Solution

24 Problème 3 Trouvez la résultante R des vecteurs suivants: A= 422 avec l angle directeur de 0° par rapport à lhorizontal, B=405 avec l angle directeur de 235° par rapport à lhorizontal et C= 210 avec l angle directeur de 110° par rapport à lhorizontal.

25 Solution 3 Illustration du problème Note: En biomécanique par convention les angles se mesurent de laxe des X positif dans le sens anti-horaire

26 Solution 3 VecteursComposante horizontale Composante verticale A422 cos 0 ° (422) 422 sin 0 ° 0 B-405 cos 55° (-232.3) -405 sin 55 ° (-331.7) C-210 cos 70 ° (-71.8) 210 sin 70 ° (197.3) R θ-48 ° ou 312 °

27 Problème Exemple de problème Afin de faire glisser une bo îte de 1000 N sur une table en bois, on doit appliquer une force de 200 N. Quelle est le coefficient de frottement entre la boîte et la table? 1000 N

28 Solution Il faut premièrement isoler le bloc et identifier toutes les forces extérieures qui agissent sur lui. Le poids étant égal à la force normale il est possible dobtenir le coefficient de frottement en substituant les valeurs connues dans la formule suivante: Afin que le bloc puisse se mettre en mouvement il doit subir une force qui excède la force de frottement statique maximale. Dans le cas suivant la force minimale servant à faire bouger le bloc est de 200 N. Il est important de mentionner que laire de contact na pas dimportance sur la force de frottement.

29 Problème Force-Vecteur F1F1 F2F2 50 o 15 o Calculez la force résultante agissant sur la rondelle pour laxe des x et laxe des y.

30 Solution F1F1 F2F2 50 o 15 o Solutionnez les forces Calculez maintenant laccélération…..

31 Solution Laccélération de la rondelle peut être déterminée par la deuxième loi de Newton: Laccélération de la rondelle est de 35.5 m/s 2 et son orientation peut se trouver de la façon suivante: a x = 11.3/.3 a x = 37.6m/s 2 Ay=0.7/0.3 Ay= 2.3m/s 2 Accélération Résultante == ( ) = 37.6 m/s 2

32 DCL

33 DCL solution

34 DCL avec Frottement Bloc 1 = Bloc A Bloc 2 = Bloc B

35 DCL avec Frottement (solution)

36 Exemple de problème 3 Problème : Selon la figure, identifiez les forces afin de compléter le diagramme de corps libre de linfirmier. Solution : Isolez le corps de linfirmier et identifiez toutes les forces extérieures agissant sur celui-ci. Ne représentez pas les forces que linfirmier exerce sur son environnement. Il ne faut pas oublier que dans la situation suivante, il faut prendre en considération les deux membres inférieurs et supérieurs de linfirmier. Il est possible didentifier cinq forces extérieures exercées sur le corps. Poids (force de gravité) Les 2 forces normales causées par la poussée, exercées par chaque pied sur le sol (N 1 et N 2 ) Les 2 forces normales causées par la poussée, exercées par chaque bras sur la chaise roulante (R 1 et R 2 )

37 DCL Trovez le DCL de la personne qui est appuyée sur le mur? Seulement les mains touchent le mur.

38 DCL Trouvez le DCL de la personne qui est appuyée sur le mur? Seulement les mains touchent le mur. 4 forces résultantes: 2 aux pieds et 2 aux mains et le poids de la personne ou 8 forces décomposées et le poids de la personne

39 DCL Trouvez le DCL de la cheville? En 2 dimension (2D)

40 DCL de la cheville Centre de gravité F g Centre de pression Force du muscle tibial antérieur Force des os Force des ligaments Moment à larticulation

41 Problème 2 ième loi déquilibre

42 Solution On trace premièrement un DCL représentant toutes les forces. Comme représenté sur ce dernier on remarque que laxe articulaire du coude devient laxe de rotation, la force de réaction C au coude nexerce donc aucun moment de force. Pour déterminer la force du triceps brachial il sagit de calculer la somme des forces verticales et le moment de forces autour du coude. Il y a deux inconnues C et F m. R w

43 Solution – Calcul de la force du triceps (F m ) R w

44 Solution – calcul de la force de réaction (C) R w

45 Solution R w

46 Même données, différent scénario…. 20° Calculez la force du triceps si le bras se retrouve à un angle de 20°. R W FmFm 20° d wx d Rx

47 Problème 2 ième loi déquilibre Problème : Sur une balançoire, deux garçons, A pesant 300 N et B 250 N, sont assis face à face. Si A est à 1,2 m du pivot, à quelle distance doit être assis B pour que la balançoire soit en équilibre ? Solution : Afin que la balançoire soit à équilibre, la somme des moments de forces doit être égale de chaque côté de la balançoire.

48 Bras de levier Problème : À laide de la figure, trouvez la valeur du bras de force et du bras de résistance. Solution : La définition dun bras de force ou dun bras de résistance est la distance perpendiculaire entre laxe de rotation et la ligne daction de la force produite par la force ou la résistance. Dans ce cas, les distances données ne sont pas les distances perpendiculaires entre la force et la résistance. Il est donc possible de trouver ces distances en utilisant les fonctions circulaires dans un triangle rectangle.

49 À partir de la figure 1, calculez la longueur du bras de résistance (x). si W = 172N, M = 500N, m = 2cm, = 30°. Figure 1

50 À partir de la figure 1, calculez la force M. Si W = 100N, x=5, m = 2.5cm, = 30°. Figure 1


Télécharger ppt "APA 2514 Exercices trigonométrie, Vecteur, 1 ière condition déquilibre 2 ième condition déquilibre."

Présentations similaires


Annonces Google