La présentation est en train de télécharger. S'il vous plaît, attendez

La présentation est en train de télécharger. S'il vous plaît, attendez

MORT CELLULAIRE CONCEPTS ET VOIES DE MORT NECROSE APOPTOSE AUTOPHAGY.

Présentations similaires


Présentation au sujet: "MORT CELLULAIRE CONCEPTS ET VOIES DE MORT NECROSE APOPTOSE AUTOPHAGY."— Transcription de la présentation:

1 MORT CELLULAIRE CONCEPTS ET VOIES DE MORT NECROSE APOPTOSE AUTOPHAGY

2 NECROSE La nécrose est une mort anormale de la cellule (cf. apoptose)
Causes possibles : Perte de l’homéostasie cellulaire Réduction de l’afflux sanguin Trop peu d’oxygène dans le sang Toxines, trauma, radiation, T°, etc.. Conséquences : Les cellules gonflent, éclatent et relarguent leurs contenus dans les espaces interstitiels Importante réaction inflammatoire

3 MECANISMES MOLECULAIRES
L’absence d’oxygène entraine : Déplétion d’ATP Synthèse et dégradation des phospholipides Fuite de calcium de la mitochondrie Reperfusion Création d’oxygène radicalaire O2- , OH-, H2O2- Molécules très réactive qui attaquent tous les constituants cellulaires Les capacités de détoxication de ces molécules sont très limités au niveau cellulaire

4 Fonctions cellulaires altérées
Dérégulation de la perméabilité membranaire et donc influence les mécanismes de transport Réduction du métabolisme cellulaire Plus de synthèse protéique Dommage au lysosomes : fuite d’enzyme dans le cytoplasme Destruction des organelles cellulaires

5 Atteinte cellulaire liée aux ROS
Anion Superoxyde Formés par les P450 et détoxication par les superoxyde dismutase Hydrogène peroxyde deétoxication par : catalase et glutathion peroxydase Radical hydroxyl .OH initie une peroxyadtion lipidique et les atteintes à l’ADN

6 Comment les radiations tuent les cellules
Radiolyse de l’eau H20 donne .H et .OH Dommage aux membranes Dommage à l’ADN Les cellules non proliférative sont aussi tuées mais les doses doivent être plus importante

7 APOPTOSE Caractéristiques d’une cellule en apoptose
Condensation cellulaire Condensation de la chromatine Fragmentation de l’ADN « blebbing »de la membrane Exposition sur la membrane externe des phosphatidylserine Sécrétion de cytokines qui inhibe l’inflammation Ces caractéristiques sont régulés par des signaux

8 Apoptose histoire 1842 : Carl Vogt remarque la disparition de noyaux dans certains tissus 1951 d »crit la mort de certaines cellules dans les tissus embryonnaire 1964 Première utilisation du terme mort programmée 1972 Kerr Wyllie et Currie utilise le terme d’apoptose

9 1ère Mise en évidence de l’apoptose
Date du milieu du XIX ème siècle puis remis au jour dans les années 30 pour vraiment être caractérisé en 1972

10 AUTOPHAGIE Sorte de « self »cannibalisme Manque de nutriment
Digestion d’organelle intracellulaire Réarrangement de la membrane séquestration des composants dans des autophagosomes puis fusion avec lysozomes (dégradation enzymatique)

11 APOPTOSE versus NECROSE

12 FRAGMENTATION DE L’ADN

13 BLEBBING DES CELLULES

14 Pourquoi l’apoptose Nombre de cellules dans l’organisme : 1014
Durée de vie d ’une cellule très variable selon l ’origine vie post-embryonnaire 200 types de cellules possédant toutes une durée de vie différente Cell. Intestinales 1 semaines Erythrocyte 120 jours Cell. Hépatiques 1 ½ an Cell. Osseuses ans Neurones, Cell. Cardiaques, rétine, ne sont jamais remplacées

15 Différenciation cellulaire
implique que toute cellule soit au bon endroit au bon moment Toutes cellules en trop doit disparaître Période et vie cellulaire cellule en G0 importance du réveil

16 Importance de l’apoptose
Homéostasie cellulaire, développement embryonaire, synapse système immunitaire … Trop d’apoptose : maladie dégénératives Trop peu d’apoptose Cancer, maladies autoimmunes

17 MECANISMES GENERAUX Très conservés des espèces les plus élémentaires aux mammifères Premières études chez Caenorhabditis elegans 2 gènes ced-3 ced-4 «killer gene»  1 gènes ced-9 «survival gene»

18 Caenorhabditis elegans
1090 cellules somatiques 131 meurent par apoptose 116 de ces 131 appartiennent au système nerveux et à l’ectoderme 959 se développent en tissus

19 Conservation des gènes

20

21 Voie Apoptotique

22 Différence entre les voies récepteur et mitochondriale
Médié par le stress Synthèse de proteïnes 12-24 heures Récepteur Pas de synthèse de prot Très rapide qqs heures

23 Les grandes familles de proteines impliquées dans l’apoptose : bcl-2
Homologue de ced-9 famille conservée, séquence homologue BH domains (dimèrization pour activation) Famille contenant des gènes pro et anti- apoptotiques Homo et hétérodimère (balance entre mort et survie cellulaire)

24 Les grandes familles de proteines impliquées dans l’apoptose : Bcl-2

25 Association de proteines

26

27 Activation des caspases

28 Les Caspase Cystéine protéase (17 membres) sont synthétisée à l’état de précurseur (QACXG) Comment les caspases tuent la cellule Destruction de protéines indispensable a la vie de la cellule Régulation des caspases : activation en cascade, IAP inhibiteur de caspase

29 Voie de mort : la voie mitochondriale et la voie des recepteurs
Apoptosome Cell stress: oxidants Fas L TNFa TNFR1 Fas/CD95 Mitochondrion Bax/BcL2 MPT Cyt c Apaf-1 Caspase-9 Procaspase-9 Caspase effectrice (e.g. caspase-3) APOPTOSIS Caspase-8 Death domains Bid / tBid

30 Le récepteur Fas

31 La voie de mort récepteur dépendant
Les récepteurs de mort :ils sont placés dans les membranes et détecte les signaux extracellulaire et initie rapidement la machinerie apoptotique Ils appartiennent à la famille des récepteurs au TNF car il contiennent un domaine extracellulaire riche en cystéine et dans le cytoplasme des séquences conservés appelés « Death Domain » Leurs ligands sont eux aussi très conservés

32 Récepteur TNRF1 : active des facteurs de transcription (gènes inflammation, immunologie) induit l’apoptose si synthèse protéique bloqué Ligand -TNF Receptor TNFR1 Caspase 8 Effector caspases Apoptosis Death domain, DD TNFR associated death domain, TRADD Fas-associated death domain, FADD Receptor interacting protein, RIP TNFR-associated factor 2, TRAF2 IKK NFkB JNKK JNK c-Jun

33 Mitochondrie et apoptose
La mitochondrie est impliqué dans l’exécution et joue un rôle pivot 3 mécanismes Dérégulation de la synthèse d’ATP Altération du statut REDOX Fuite de facteurs apoptogène qui vont activer des caspases

34 Famille bcl-2

35 Protéines activatrices des caspases
Cyt c va former l’apoptosome Procaspase 3«dans certains tissus comme Apoptosis inducing factor AIF

36 Formation de l’apoptosome

37 Activation des caspases par la mitochondrie
Cell death triggers Oxidants, calcium Bax, ceramide Channels open, outer membrane intact Matrix swelling, outer membrane ruptures Cytochrome c & other caspase activators Necrosis ATP, Dy ROS Inactive Apaf-1 Active Apaf-1 Caspase 9 Caspases activated Apoptosis

38 Substrat des caspases

39 Inhibitors of Apoptosis Proteins (IAPs)
Consisting of NAIP, XIAP, cIAP1, cIAP2, and survivn Suppress apoptosis by preventing procaspase activation and inhibiting the activity of mature caspases (caspase-3, -7, and -9) by directly binding to caspases. Expression of cIAP1/2 is stimulated by NF-κBmediated survival signals. Negative regulators of IAPs: Smac/DIABLO, XAF1, and OMI/HTRA2

40 Surveillance du cycle cellulaire

41 Atteinte de l’ADN

42

43 La proteine P53 Dans les cellules normales (non stressé) la p53 est rapidement dégradé après association avec son régulateur MDM2. p53 forme un complexe avec une proteine E3 (ubiquitin ligase) et ainsi p53 est guidé vers le proteasome. Dans les cellules normales p53 est un régulateur positif de la prolifération cellulaire Dans les cellules « stressées » p53 arrête la division par un phénomène apoptotique mitochondrial dépendant (Bax oligomérisation). Dans les cellules cancéreuses p53 est un facteur de transcription (Puma, Noxa, p53AIP1,Bax, Apa-1)

44 MDM2 : Mouse Double Minute 2
Le gène mdm2 encode pour une protéine (zinc finger) qui inhibe p53 pendant la phase de croissance dans une cellule normale Au niveau du noyau « bind » p53 N-Terminal et masque son domaine de transactivation Au niveau du cytoplasme MDM2 est responsable de l’ubiquitylisation et donc de la dégradation de p53, MDM2 est une cible de p53 MDM2 est une ubiquitin ligase (p53 dégradation)

45 Comment p53 est elle activé et stabilisé lors d’une atteinte à l’ADN
Phosphorylation Inhibition du transport hors du noyau

46

47 Role of p53 in cell cycle control:“guardian of the genome”
cell cycle arrest: repair defective genes latent p53 active p53 cell type level of p53 extent of DNA damage genetic background activation accumulation stress factors or oncogenic proteins mdm2 apoptosis: kill harmful deregulated cells negative feedback loop !!

48

49

50

51 Si p53 est nécessaire pour supprimer des cellules altérées, que peut on attendre alors si p53 est muté ? Pas de blocage de la division cellulaire Cancer

52 Apoptose et immunité

53

54


Télécharger ppt "MORT CELLULAIRE CONCEPTS ET VOIES DE MORT NECROSE APOPTOSE AUTOPHAGY."

Présentations similaires


Annonces Google