La présentation est en train de télécharger. S'il vous plaît, attendez

La présentation est en train de télécharger. S'il vous plaît, attendez

PROBLEME (12 points)Lille 99 Les figures sont à compléter. Dans ce problème, l'unité utilisée est le millimètre. ABC est un triangle tel que : AB = 42,

Présentations similaires


Présentation au sujet: "PROBLEME (12 points)Lille 99 Les figures sont à compléter. Dans ce problème, l'unité utilisée est le millimètre. ABC est un triangle tel que : AB = 42,"— Transcription de la présentation:

1

2 PROBLEME (12 points)Lille 99 Les figures sont à compléter. Dans ce problème, l'unité utilisée est le millimètre. ABC est un triangle tel que : AB = 42, AC = 56, BC = 70. Dans tout le problème :. M est un point du segment [BC] distinct de B et C;. la perpendiculaire à la droite (AB) passant par M coupe le segment [AB] en H;. la perpendiculaire à la droite (AC) passant par M coupe le segment [AC] en K. 1. Démontrer que ABC est un triangle rectangle en A. 2. Compléter la figure 1 ci-dessus. 3. Démontrer que AHMK est un rectangle. Première partie Dans cette partie, BM = a) En utilisant le théorème de Thalès et ses conséquences dans les triangles BHM et BAC, calculer BH et HM. b) En déduire AH. 2. Calculer le périmètre du rectangle AHMK. 1. a) En utilisant le théorème de Thalès et ses conséquences dans les triangles BHM et BAC, calculer BH et HM. b) En déduire AH. 2. Calculer le périmètre du rectangle AHMK. A C B

3 Deuxième partie Dans cette partie, on pose BM = x (x en mm). 1. a) Démontrer que : HM = 0,8x. b) Exprimer BH en fonction de x. En déduire que : AH = ,6x. 2. a) Exprimer le périmètre du rectangle AHMK en fonction de x. (On donnera le résultat sous la forme développée et réduite.) b) Calculer la valeur de x pour laquelle HM = AH. c) Pour la valeur obtenue, préciser la nature de AHMK et calculer son périmètre. 1. a) Démontrer que : HM = 0,8x. b) Exprimer BH en fonction de x. En déduire que : AH = ,6x. 2. a) Exprimer le périmètre du rectangle AHMK en fonction de x. (On donnera le résultat sous la forme développée et réduite.) b) Calculer la valeur de x pour laquelle HM = AH. c) Pour la valeur obtenue, préciser la nature de AHMK et calculer son périmètre. Troisième partie Dans cette partie, le point M est l'intersection de la bissectrice de l'angle et de la droite (BC). 1. Sur la figure 2 ci-dessus, construire les points M, H et K. 2. Démontrer que AHMK est un carré. 3. Quelle est, dans ce cas, la valeur de BM ? 1. Sur la figure 2 ci-dessus, construire les points M, H et K. 2. Démontrer que AHMK est un carré. 3. Quelle est, dans ce cas, la valeur de BM ? A C B

4 Le côté le plus long du triangle ABC est BC = 70 mm. Je compare BC² = 70² BC² = 4900 AC² + AB² = 42² + 56² AC² + AB² = AC² + AB² = 4900 Daprès le théorème réciproque de Pythagore ce triangle est rectangle en A. A C B M ABC est un triangle tel que : AB = 42, AC = 56, BC = Démontrer que ABC est un triangle rectangle en A.

5 A C B M. M est un point du segment [BC] distinct de B et C;. la perpendiculaire à la droite (AB) passant par M coupe le segment [AB] en H;. la perpendiculaire à la droite (AC) passant par M coupe le segment [AC] en K. 2. Compléter la figure 1 ci-dessous. 3. Démontrer que AHMK est un rectangle. H K AMHK est un quadrilatère qui possède 3 angles droits… Donc c est un rectangle.

6 Première partie : dans cette partie, BM = a) En utilisant le théorème de Thalès et ses conséquences dans les triangles BHM et BAC, calculer BH et HM. A C B M H K Les droites (MH) et (AC) sont parallèles car toutes deux perpendiculaires à (AB), donc les triangles BMH et ABC sont en situation de THALES. Légalité de THALES s écrit : Pour calculer BH je choisis 70 BH = 14 x 42 BH = 8,4mm

7 Première partie : dans cette partie, BM = a) En utilisant le théorème de Thalès et ses conséquences dans les triangles BHM et BAC, calculer BH et HM. b) En déduire AH. 2. Calculer le périmètre du rectangle AHMK. A C B M H K Pour calculer MH je choisis 70 MH = 14 x 56 MH = 11,2mm B) AH = BA - BH = ,4 = 33,6 mm 2) Le périmètre du rectangle est donc égal à P = 2AH + 2HM = 89,6mm

8 Pour exprimer MH en fonction de x je choisis 70 MH = x x 56 Deuxième partie Dans cette partie, on pose BM = x (x en mm). 1. a) Démontrer que : HM = 0,8x. A C B M H K Dans la première partie, nous avons justifié l égalité de Thalès 8 x 7 10 x 7 MH = 0,8x

9 Deuxième partie Dans cette partie, on pose BM = x (x en mm). 1. a) Démontrer que : HM = 0,8x. b) Exprimer BH en fonction de x. En déduire que : AH = ,6x. A C B M H K Pour calculer BH je choisis 70 BH = 42x BH = 0,6x 6 x 7 10 x 7 Finalement AH = AB - BH = ,6x

10 2) a) Le périmètre du rectangle est donc égal à P = 2AH + 2HM P = 2 x ( ,6x) + 2 x 0,8x P= ,2x +1,6x P= ,4x 2. a) Exprimer le périmètre du rectangle AHMK en fonction de x. (On donnera le résultat sous la forme développée et réduite.) b) Calculer la valeur de x pour laquelle HM = AH. c) Pour la valeur obtenue, préciser la nature de AHMK et calculer son périmètre. b) HM = AH …. 0,8x = ,6x 0,8x + 0,6x = 42 1,2x = 42 x = 42/1,2 x = 30 Lorsque x = 30mm Dans ce cas le rectangle AHMK possède deux côtés consécutifs égaux donc cest un carré. Son périmètre est ,4 x 30 = 96 mm.

11 Troisième partie Dans cette partie, le point M est l'intersection de la bissectrice de l'angle et de la droite (BC). 1. Sur la figure 2 ci-dessus, construire les points M, H et K. 2. Démontrer que AHMK est un carré. 3. Quelle est, dans ce cas, la valeur de BM ? A C B M H K M est équidistant des droites (AB) et (AC) soit MH = MK (or AHMK est un rectangle ) donc MH = HA d après la partie précédente AHMK est un carré et BM = 30mm M est un point de la bissectrice de l angle ABC donc.


Télécharger ppt "PROBLEME (12 points)Lille 99 Les figures sont à compléter. Dans ce problème, l'unité utilisée est le millimètre. ABC est un triangle tel que : AB = 42,"

Présentations similaires


Annonces Google