La présentation est en train de télécharger. S'il vous plaît, attendez

La présentation est en train de télécharger. S'il vous plaît, attendez

Introduction aux Probabilités P.A. Desrousseaux I.U.T. de Béziers Université de Montpellier 2 I.C.F.P. 2009P.A. Desrousseaux.

Présentations similaires


Présentation au sujet: "Introduction aux Probabilités P.A. Desrousseaux I.U.T. de Béziers Université de Montpellier 2 I.C.F.P. 2009P.A. Desrousseaux."— Transcription de la présentation:

1 Introduction aux Probabilités P.A. Desrousseaux I.U.T. de Béziers Université de Montpellier 2 I.C.F.P. 2009P.A. Desrousseaux

2 Les objectifs de la formation - Revoir ensemble ce qui est exigible et ce que lon peut faire avec sa classe ; - Discuter de l'intérêt des probabilités dans la vie courante (partie 1) ; - (Re)voir quelques notions essentielles à l'aide d'exemples ; - Par groupes, construire un cours d'introduction aux probabilités ; I.C.F.P. 2009P.A. Desrousseaux

3 Les objectifs de la formation (suite) - Discuter de l'intérêt des probabilités dans la vie courante (partie 2) ; - Par groupes, construire une activité, un TD ou, par exemple un devoir ; - Travailler sur les probabilités et les TICE - Construire une séance TICE liée aux probabilités, sur ordinateur ou calculatrice ; - Récolter vos différents documents afin de les mettre à disposition de chacun d'entre vous. I.C.F.P. 2009P.A. Desrousseaux

4 Les statistiques comme outil d'estimation et dargumentation critique. Pourquoi avoir développé les statistiques ? I.C.F.P. 2009P.A. Desrousseaux

5 Les statistiques comme outil d'estimation et dargumentation critique. Pourquoi avoir développé les statistiques ? * Pour savoir effectuer une étude, *Savoir synthétiser des résultats, les analyser en les traduisant à l'aide de données (numériques : fréquences, moyennes, médiane, puis plus tard : écart-type, risque... ou graphiques : diagrammes, histogrammes, boîtes à moustaches...), * Savoir présenter les résultats due étude, *Faire preuve d'un esprit critique (pertinence des résultats, corrections saisonnières par lissage, écart significatifs, courbe de Gauss...) vis à vis de ce que l'on présente ou de ce qui nous est présenté dans les journaux et autres. I.C.F.P. 2009P.A. Desrousseaux

6 Pourquoi développer les probabilités ? I.C.F.P. 2009P.A. Desrousseaux

7 Pourquoi développer les probabilités ? * Pour enrichir le langage (chance de..., aléatoire) ; * Définir de nouveaux concepts pour un mode de pensée pertinent ; * Pour faire le lien entre la pratique (les relevés statistiques) et la théorie (les probabilités correspondantes). I.C.F.P. 2009P.A. Desrousseaux

8 Dans les pays voisins (Espagne, Allemagne...) cette introduction est présente au niveau collège depuis plusieurs années. Depuis quelques années, elle est introduite et tient une place assez importante en lycée. I.C.F.P. 2009P.A. Desrousseaux

9 Dans les pays voisins (Espagne, Allemagne...) cette introduction est présente au niveau collège depuis plusieurs années. Depuis quelques années, elle est introduite et tient une place assez importante en lycée. A titre d exemple : Série S : 5 chapitres sur 35. I.C.F.P. 2009P.A. Desrousseaux

10 Dans les pays voisins (Espagne, Allemagne...) cette introduction est présente au niveau collège depuis plusieurs années. Depuis quelques années, elle est introduite et tient une place assez importante en lycée. A titre d exemple : Série ES : 7 chapitres sur 28. I.C.F.P. 2009P.A. Desrousseaux

11 L'introduction aux probabilités est au programme de troisième et mis en application cette année. Deux textes de référence : Le programme, page 49 : ftp://trf.education.gouv.fr/pub/edutel/bo/2007/hs6/MENE A_annexe2.pdf Le document d'accompagnement « Probabilités au collège » : I.C.F.P. 2009P.A. Desrousseaux

12 Ce que dit le Programme : Sur les statistiques en troisième I.C.F.P. 2009P.A. Desrousseaux

13 Ce que dit le Programme : Sur les probabilités en troisième I.C.F.P. 2009P.A. Desrousseaux

14 Quels sont, selon vous, les points essentiels ? - les définitions ; - les propriétés ; - les savoir-faire... I.C.F.P. 2009P.A. Desrousseaux

15 EN VRAC Expérience aléatoire Issue ou événement élémentaire Evénement Evénement contraire Probabilité Evénement impossible, certain Loi de probabilité Lien fréquence probabilité avec la loi des grands nombres Evénements incompatibles Equiprobabilité Expériences aléatoires à deux épreuves Arbre Somme des branches d'un arbre Probabilité du contraire I.C.F.P. 2009P.A. Desrousseaux

16 Un Vrai/Faux pour détecter les fausses idées I.C.F.P. 2009P.A. Desrousseaux

17 Un Vrai/Faux pour détecter les fausses idées (suite) I.C.F.P. 2009P.A. Desrousseaux

18 En tant quenseignants, * quelles sont les erreurs décelées dans ces exercices ? * quelle notion principale est en jeu dans ces exercices ? I.C.F.P. 2009P.A. Desrousseaux

19 La loi (faible) des grands nombres I.C.F.P. 2009P.A. Desrousseaux Alexandre Khintchine

20 La loi (faible) des grands nombres La loi des grands nombres indique que lorsque l'on fait un tirage aléatoire dans une série de grande taille, plus on augmente la taille de l'échantillon, plus les caractéristiques statistiques de l'échantillon se rapprochent des caractéristiques statistiques de la population ou des probabilités de lexpérience aléatoire. I.C.F.P. 2009P.A. Desrousseaux

21 Quelques exemples (partie 1)…... Pour répondre à léternelle question : A quoi ça sert ? Certains ludiques, dautres plus sérieux. I.C.F.P. 2009P.A. Desrousseaux

22 Exemple 1 : Les prévisions météorologiques Les prévisions météorologiques s'appuient sur des calculs probabilistes très complexes. La dynamique des fluides est basée sur des mouvements aléatoires (browniens). Plus les prévisions sont éloignées plus imprécises elles sont. D'où l'apparition dans les bulletins météorologiques des indices de fiabilité. I.C.F.P. 2009P.A. Desrousseaux

23 Exemple 2 : Les codes correcteurs derreurs C'est une branche des mathématiques qui s'appuie sur les codes détecteurs d'erreurs, par exemple pour les numéros de sécurité sociale (congruence modulo 97) ; et sur les probabilités pour corriger les erreurs. Très utile pour les transmissions de données. A titre indicatif, un CD de bonne qualité contient plus de erreurs ! (Une seconde de musique contient bits !) I.C.F.P. 2009P.A. Desrousseaux

24 Exemple 3 : La cryptographie Les statistiques, et par extension, les probabilités interviennent également en cryptographie. I.C.F.P. 2009P.A. Desrousseaux

25 Par exemple, pour savoir dans quelle langue est écrit un message crypté, on se base sur les pourcentages dapparition des lettres de lalphabet (ici en français). I.C.F.P. 2009P.A. Desrousseaux

26 Par exemple, pour savoir dans quelle langue est écrit un message crypté, on se base sur les pourcentages dapparition des lettres de lalphabet (ici en français). Remarques : *A titre indicatif, en anglais : le A : 8,08% et le U : 2,79% *Pour les joueurs de Scrabble : il y a corrélation entre le nombre de pièces et la valeur d'une pièce d'une part et ce tableau de pourcentages d'autre part. I.C.F.P. 2009P.A. Desrousseaux

27 Exemple 4 : Anniversaires Si votre classe compte 23 élèves (ou plus), il y a plus dune chance sur deux que deux de vos élèves soient nés le même jour ; Si votre classe compte 30 élèves (ou plus), il y a plus de 7 chances sur 10 que deux de vos élèves soient nés le même jour. Une petite explication et des détails... I.C.F.P. 2009P.A. Desrousseaux

28 Anniversaires I.C.F.P. 2009P.A. Desrousseaux

29 Anniversaires I.C.F.P. 2009P.A. Desrousseaux

30 Exemple 5 : Jeu équitable ou non En se promenant dans la rue, on croise une personne qui propose le jeu gratuit suivant. On lance un dé. * Si le chiffre obtenu est pair, alors on gagne 2 euros ; * Si le chiffre obtenu est 1 ou 3, alors on perd 1 euro ; * Si le chiffre obtenu est 5, alors on perd 5 euros. A-t-on intérêt à jouer ? I.C.F.P. 2009P.A. Desrousseaux

31 La réponse est NON I.C.F.P. 2009P.A. Desrousseaux

32 Exemple 6 : Comment perdre au casino ? Il suffit de jouer ! Les machines à sous sont programmées pour ne reverser qu'à peu près 60% des mises. Par exemple : Trois rouleaux au bandit manchot de 4 possibilités chacun, dont le fameux « 7 ». * Vous avez donc 1 chance sur 4x4x4 de gagner. * Vous misez 1 euro par jeu. * Lorsque vous gagnez, la machine devrait vous verser 4x4x4=64 euros. * A la place, elle vous versera 60% de 64 euros, c'est à dire 38,4 euros... * Gain pour le casino, même si vous gagnez : 25,6 euros ! Le jeu le moins pénalisant est la mise simple sur un numéro à la roulette. I.C.F.P. 2009P.A. Desrousseaux

33 Exemple 7 : Comment gagner au Loto ? 100% des gagnants ont tenté leur chance I.C.F.P. 2009P.A. Desrousseaux

34 Probabilités de sortie : 1er numéro 2ème numéro 3ème numéro 4ème numéro 5ème numéro 6ème numéro 6/49 5/48 4/47 3/46 2/45 1/44 Chance d'avoir les six numéros gagnants : p =(6/49)x(5/48)x(4/47)x(3/46)x(2/45)x(1/44) =1/ (1/combinaison (49;6)) I.C.F.P. 2009P.A. Desrousseaux

35 Chance d'avoir les six numéros gagnants : p =(6/49)x(5/48)x(4/47)x(3/46)x(2/45)x(1/44) =1/ (1/combinaison (49;6)) Une chance sur 14 millions de gagner, cela veut dire que si je remplis toutes les grilles, à 0,60 euro la grille, je suis sûr de gagner le gros lot… Quen pensent les élèves ? I.C.F.P. 2009P.A. Desrousseaux

36 Exemple 8 : Décision des autorités médicales Une région est touchée par une épidémie. Un individu peut être : I : immunisé M : malade S : ni immunisé, ni malade On observe que, d'une semaine sur l'autre : * étant immunisé, il peut le rester avec une probabilité de 0,9 ; ou passer à l'état S avec une probabilité de 0,1 ; * étant à l'état S, il peut le rester avec une probabilité de 0,5 ; ou tomber malade avec une probabilité de 0,5 ; * étant malade, il peut le rester avec une probabilité de 0,2 ; ou devenir immunisé avec une probabilité de 0,8. Les autorités médicales décideront de lancer une campagne de vaccination si les prévisions à long terme conduisent à une probabilité d'être malade supérieure à 9 sur 100. Que décider ? I.C.F.P. 2009P.A. Desrousseaux

37 On traduit cette situation aléatoire par le graphe probabiliste suivant : Puis, ce graphe est écrit sous forme de matrice : I.C.F.P. 2009P.A. Desrousseaux

38 Fin des exemples (partie 1) I.C.F.P. 2009P.A. Desrousseaux

39 Préparation dun cours par groupes I.C.F.P. 2009P.A. Desrousseaux

40 Quelques exemples (partie 2)… I.C.F.P. 2009P.A. Desrousseaux

41 Exemple 8 : La couleur ou vous êtes cuits Vous êtes trois amis explorateurs et avez été faits prisonniers par les indiens. Ils vous attachent à des poteaux et vous proposent le jeu suivant : - Ils vous ont placé un chapeau sur la tête, blanc ou noir. - Chacun voit la couleur des chapeaux des deux autres, mais pas du sien. - Chacun doit écrire sur un papier la couleur de son chapeau ou sabstenir. - Vous ne serez pas cuits, puis mangés si lun au moins se prononce et si ce qui est dit est juste. Remarque : Vous pouvez vous concerter avant le début du jeu. I.C.F.P. 2009P.A. Desrousseaux

42 Stratégie simple : Ils décident que deux sabstiennent et que le troisième répond au hasard. Probabilité de ne pas être mangé : 1/2 Stratégie élaborée : Utiliser les informations détenues par les autres pour augmenter ses chances. I.C.F.P. 2009P.A. Desrousseaux

43 Meilleure stratégie : Si lun voit la même couleur de chapeaux sur la tête des deux autres, il dit alors que son chapeau est de lautre couleur. Sinon, il sabstient. Gagné : ou Perdu : ou I.C.F.P. 2009P.A. Desrousseaux

44 Probabilité de ne pas se faire cuire puis manger : 3/4 - Existe-t-il une meilleure stratégie ? Non. - Existe-t-il une autre façon dobtenir 3/4 ? Mathématiquement : Oui Moralement : Non (Géométrie dans lespace et codes correcteurs derreurs) I.C.F.P. 2009P.A. Desrousseaux

45 Géométriquement… (1;0;0)(0;1;1) Gagné : (0;1;0)ou(1;0;1) (0;0;1)(1;1;0) Perdu :(0;0;0)ou(1;1;1) Moralement, cest la même chose si on change le centre des boules. I.C.F.P. 2009P.A. Desrousseaux

46 Pour les détecteurs derreurs En réalité, on nutilise pas la distance dans R^3, mais la distance de Hamming Mot : ensemble de lettres Lettres : 0 ou 1 Exemple : Les mots et sont à une distance 2 I.C.F.P. 2009P.A. Desrousseaux

47 Boules de centres 000 et 111 et de rayon 1 Boules de centres 010 et 101 et de rayon 1 I.C.F.P. 2009P.A. Desrousseaux

48 Sphères de centres 000 et 111 et de rayon 2 I.C.F.P. 2009P.A. Desrousseaux

49 Supposons que sur un mot de deux lettres xy, on cherche à détecter une erreur On peut envoyer le mot de trois lettres suivant : xyz avec z=x+y modulo 2 Exemples : I.C.F.P. 2009P.A. Desrousseaux

50 Ainsi : Mots autorisésMots interdits Chaque mot dune sphère est renvoyé sur un seul mot de lautre ! Lerreur est détectée et corrigée ! I.C.F.P. 2009P.A. Desrousseaux

51 Exemple 9 : Drame au petit-déjeuner I.C.F.P. 2009P.A. Desrousseaux

52 On note M lévénement : la tartine est tombée du mauvais côté. I.C.F.P. 2009P.A. Desrousseaux

53 I.C.F.P. 2009P.A. Desrousseaux

54 Exemple 10 : Vérifier le fonctionnement d'une machine Tests d'hypothèses – Fluctuations d'échantillonnage Sur une chaîne de fabrication de téléphones portables, un robot est programmé pour pulvériser 1 cl de peinture sur l'enveloppe du téléphone. Au début de chaque mois, on teste un échantillon de 50 pulvérisations pour s'assurer que le robot est bien réglé. Par exemple, le 1er janvier, on obtient une moyenne de 0,99 cl pour léchantillon. I.C.F.P. 2009P.A. Desrousseaux

55 Que conclure ? Le robot est-il bien réglé ou non ? A l'aide des probabilités (et de la loi Normale), on détermine un intervalle d'acceptation. - Lorsque le volume observé sur l'échantillon est dans cet intervalle, on « affirme » (avec un risque d'erreur déterminé) que le robot fonctionne bien. - Sinon, qu'il fonctionne mal. Remarque : On peut commettre deux types d'erreurs : 1. erreur de première espèce : dire que le robot fonctionne bien alors qu'il fonctionne mal 2. erreur de deuxième espèce : dire que le robot fonctionne mal alors qu'il fonctionne bien. I.C.F.P. 2009P.A. Desrousseaux

56 Pour celles et ceux que cela intéresse… I.C.F.P. 2009P.A. Desrousseaux

57 I.C.F.P. 2009P.A. Desrousseaux

58 I.C.F.P. 2009P.A. Desrousseaux

59 Exemple 11 : Accidents davions - La série noire ? Savoir décider du caractère exceptionnel d'un événement. L'exemple de la liste noire des compagnies aériennes suite à une recrudescence des accidents d'avions durant le mois d'août Cette série d'accidents était-elle due aux manques de responsabilités de certaines compagnies ? Ou au hasard ? La réponse dans un des exercices T.I.C.E. I.C.F.P. 2009P.A. Desrousseaux

60 Création dune activité, dun T.P. et/ou dun devoir. I.C.F.P. 2009P.A. Desrousseaux

61 Vers la mise en place dune séance T.I.C.E. Les outils probabilistes sont les plus efficaces pour résoudre les problèmes liés aux probabilités. (merci : on sen serait douté !). Trois autres exemples de résolutions qui peuvent être effectuées par vos élèves. - essayer ; - utiliser la géométrie ; - utiliser les T.I.C.E. I.C.F.P. 2009P.A. Desrousseaux

62 Le lancer de punaise : lexpérimentation Lorsqu'on effectue le lancer d'une punaise, elle peut retomber de deux manières différentes : - Lorsqu'on effectue un petit nombre de lancers successifs, la fréquence des résultats : Position 1 ou Position 0 ne semble suivre aucune loi. - Par contre, en lançant un grand nombre de fois la punaise, on voit apparaître une certaine régularité dans les fréquences obtenues. Cela permet de mettre en évidence une probabilité de tomber sur chacune des positions. Mais... I.C.F.P. 2009P.A. Desrousseaux

63 Le jeu de franc carreau : la géométrie Le jeu consiste à lancer une pièce (de 1 cm de rayon, par exemple) sur un quadrillage dont les carreaux sont des carrés (de 10cm de côté, par exemple). On dit quon obtient : - FRANC CARREAU, lorsque la pièce tombe entièrement dans un carreau (elle peut toucher le bord) ; - PAS FRANC CARREAU, sinon. I.C.F.P. 2009P.A. Desrousseaux

64 Le jeu de franc carreau : la géométrie On peut, là encore expérimenter avec les élèves. Relever des fréquences qui devraient tendre vers la probabilité cherchée : p(FRANC CARREAU) Ou, utiliser des considérations géométriques : - que faut-il pour obtenir FRANC CARREAU ? - et si on change la taille de la pièce ? - et si on change la taille des carreaux ? I.C.F.P. 2009P.A. Desrousseaux

65 Utiliser les T.I.C.E. - Quelques rappels sur les formules usuelles ; - Exercice 1 : Deux points sur un segment ; - Exercice 2 : Accidents davions (plus difficile) ; - Exercice 3 : Lancer de dé (plus classique). I.C.F.P. 2009P.A. Desrousseaux

66 I.C.F.P. 2009P.A. Desrousseaux

67 I.C.F.P. 2009P.A. Desrousseaux

68 I.C.F.P. 2009P.A. Desrousseaux

69 I.C.F.P. 2009P.A. Desrousseaux

70 I.C.F.P. 2009P.A. Desrousseaux

71 I.C.F.P. 2009P.A. Desrousseaux

72 I.C.F.P. 2009P.A. Desrousseaux

73 I.C.F.P. 2009P.A. Desrousseaux

74 I.C.F.P. 2009P.A. Desrousseaux

75 I.C.F.P. 2009P.A. Desrousseaux

76 I.C.F.P. 2009P.A. Desrousseaux

77 I.C.F.P. 2009P.A. Desrousseaux

78 I.C.F.P. 2009P.A. Desrousseaux

79 Création dune séance T.I.C.E. I.C.F.P. 2009P.A. Desrousseaux

80 Cette présentation se trouve sur le lien suivant : I.C.F.P. 2009P.A. Desrousseaux


Télécharger ppt "Introduction aux Probabilités P.A. Desrousseaux I.U.T. de Béziers Université de Montpellier 2 I.C.F.P. 2009P.A. Desrousseaux."

Présentations similaires


Annonces Google