La présentation est en train de télécharger. S'il vous plaît, attendez

La présentation est en train de télécharger. S'il vous plaît, attendez

Vie et mort des cellules dans les tissus I.L'épiderme et son renouvellement par les cellules souches II.Épithélium sensoriel III.Voies aériennes et intestin.

Présentations similaires


Présentation au sujet: "Vie et mort des cellules dans les tissus I.L'épiderme et son renouvellement par les cellules souches II.Épithélium sensoriel III.Voies aériennes et intestin."— Transcription de la présentation:

1 Vie et mort des cellules dans les tissus I.L'épiderme et son renouvellement par les cellules souches II.Épithélium sensoriel III.Voies aériennes et intestin IV.Vaisseaux sanguins et cellules endothéliales V.Renouvellement par des cellules souches multipotentes : la formation des cellules sanguines VI.Genèse : modulation et régénération du muscle squelettique VII.Les fibroblastes et leurs transformations : la famille des cellules du tissu conjonctif VIII.Ingénierie des cellules souches

2 Vie et mort des cellules dans les tissus Être unicellulaire : individu originel Être pluricellulaire : cellules au service du corps tout entier Plus de 200 types de cellules différents dans lorganisme

3 3 Cells of the Adult Human Body : a Catalogue How many distinct cell types are there in an adult human being? In other words, how many normal adult ways are there of expressing the human genome? A large textbook of histology will mention about 200 cell types that qualify for individual names. These traditional names are not, like the names of colors, labels for parts of a continuum that has been subdivided arbitrarily: they represent, for the most part, discrete and distinctly different categories. Within a given category there is often some variationthe skeletal muscle fibers that move the eyeball are small, while those that move the leg are big; auditory hair cells in different parts of the ear may be tuned to different frequencies of sound; and so on. But there is no continuum of adult cell types intermediate in character between, say, the muscle cell and the auditory hair cell. The traditional histological classification is based on the shape and structure of the cell as seen in the microscope and on its chemical nature as assessed very crudely from its affinities for various stains. Subtler methods reveal new subdivisions within the traditional classification. Thus modern immunology has shown that the old category of lymphocyte includes more than 10 quite distinct cell types. Similarly, pharmacological and physiological tests reveal that there are many varieties of smooth muscle cellthose in the wall of the uterus, for example, are highly sensitive to estrogen, and in the later stages of pregnancy to oxytocin, while those in the wall of the gut are not. Another major type of diversity is revealed by embryological experiments of the sort discussed in Chapter 21. These show that, in many cases, apparently similar cells from different regions of the body are nonequivalent, that is, they are inherently different in their developmental capacities and in their effects on other cells. Thus, within categories such as fibroblast there are probably many distinct cell types, different chemically in ways that are not easy to perceive directly. For these reasons any classification of the cell types in the body must be somewhat arbitrary with respect to the fineness of its subdivisions. Here, we list only the adult human cell types that a histology text would recognize to be different, grouped into families roughly according to function. We have not attempted to subdivide the class of neurons of the central nervous system. Also, where a single cell type such as the keratinocyte is conventionally given a succession of different names as it matures, we give only two entriesone for the differentiating cell and one for the stem cell. With these serious provisos, the 210 varieties of cells in the catalogue represent a more or less exhaustive list of the distinctive ways in which a given mammalian genome can be expressed in the phenotype of a normal cell of the adult body.

4 4 extbooks/ /pdfs/appe ndix.pdf

5 5 om/textbooks/ / pdfs/appendix.pdf

6 6 Tissu Association des ces types cellulaires qui collaborent entre elles Forment des organes

7 7 Conséquences du contrôle de lexpression des gènes et des mécanismes du développement animal Création de la diversification cellulaire dans lembryon par des mécanismes génétiques moléculaires Maintien de la diversification des cellules grâce au dialogue et à la mémoire des cellules Construction des tissus par la matrice extra cellulaire Mode de vie des cellules spécialisées

8 8 Questions posées Comment les cellules collaborent entre elles pour exécuter leur tâche ? Comment naissent vivent et meurent les nouvelles cellules spécialisées ? Comment est préservée larchitecture des nouveaux tissus malgré leur perpétuel remaniement ?

9 9 Réponses diverses Exemples illustrant les principes généraux Intéressants par loriginalité de leurs moyens détude Nombreux problèmes non résolus

10 Plan I.L'épiderme et son renouvellement par les cellules souches II.Épithélium sensoriel III.Voies aériennes et intestin IV.Vaisseaux sanguins et cellules endothéliales V.Renouvellement par des cellules souches multipotentes : la formation des cellules sanguines VI.Genèse : modulation et régénération du muscle squelettique VII.Les fibroblastes et leurs transformations : la famille des cellules du tissu conjonctif VIII.Ingénierie des cellules souches

11 11 L'épiderme et son renouvellement par les cellules souches

12 12 Architecture de la peau de mammifère Epithélium : épiderme Tissu conjonctif sous-jacent très vascularisé et innervé: –Dense (dont on fait le cuir) : derme –Tissu adipeux sous-cutané : hypoderme

13 13 Caractères généraux de lépiderme (communs à tous les tissus) 1.Fibroblastes 2.Vascularisation 3.Fibres nerveuses

14 Fibroblastes force mécanique Grâce à la matrice extra-cellulaire (sécrétée par les fibroblastes)

15 Vascularisation Cellules endothéliales Échanges O 2, CO 2, nutriments, déchets Défense par apport de –Macrophages –Cellules dendritiques Phagocytose des agents infectieux Activation des lymphocytes

16 Fibres nerveuses Information sensorielle au système nerveux central Sécrétion glandulaire Contraction musculaire

17 17 Fig 22-1 A Architecture de la peau de mammifère –Epithélium : épiderme –Tissu conjonctif sous-jacent très vascularisé et innervé: Derme hypoderme

18 18 Fig 22-1 B Coupe microscopique dune plante de pied humain (Hématoxyline - Éosine)

19 19 Fig 22-1 B Coupe microscopique dune plante de pied humain (HE)

20 20 Épiderme Spécificité de la peau Organisation simple Beau modèle de renouvellement des tissus comme chez lembryon

21 Structure de lépiderme

22 22 Lépiderme Très exposé aux agressions extérieures Nécessité de réparation et renouvellement permanent Constitué de kératinocytes (+ quelques autres types cellulaires) Épithélium pavimenteux pluristratifié (=malpighien)

23 23 Le kératinocyte LA cellule de lépiderme

24 24 Autres types cellulaires Cellules dendritiques –= cellules de Langerhans –Proviennent de la moelle Mélanocytes –Cellules pigmentaires –Proviennent des crêtes neurales Cellules de Merkel –Associées aux terminaisons nerveuses

25 25 Merkel Cells Modified epidermal cells located in the stratum basale. They are found mostly in areas where sensory perception is acute, such as the fingertips. Merkel cells are closely associated with an expanded terminal bulb of an afferent myelinated nerve fiber. Do not confuse with Merkel's corpuscle which is a combination of a neuron and an epidermal cell.

26 26 Human Merkel cells Moll I, Roessler M, Brandner JM, Eispert AC, Houdek P, Moll R. Human Merkel cells - aspects of cell biology, distribution and functions. Eur J Cell Biol. 2005;84(2-3): Human Merkel cells were first described by Friedrich S. Merkel in 1875 and named Tastzellen (touch cells) assuming a sensory touch function within the skin. Only ultrastructural research revealed their characteristics such as dense-core granules, plasma membrane spines and dendrites as well as a loosely arranged cytoskeleton. Biochemical analysis identified the expression of very specific cytokeratins (most notably CK 20) allowing the immunohistochemical detection of Merkel cells. In humans, they occur within the basal epidermis, being concentrated in eccrine glandular ridges of glabrous skin and in Haarscheiben of hairy skin, within belt-like clusters of hair follicles, and in certain mucosal tissues. Within the human skin, the dense-core granules contain heterogeneously distributed neuropeptides, some of which might work as neurotransmitters through which Merkel cells and their associated nerves exert their classical function as slowly adapting mechanoreceptors type I. This is the case in the Haarscheiben, small sensory organs containing keratinocytes with a special program of differentiation that includes the expression of CK 17 and Ber-EP4. Other peptides may act as growth factors and thus might participate in growth, differentiation and homeostasis of cutaneous structures. It is not yet clear whether the Merkel cell carcinomas, aggressive skin carcinomas, indeed arise from Merkel cells. We summarize and discuss data on the distribution, function and heterogeneity of human Merkel cells in normal and diseased skin.

27 27 Gurdip S. Sidhu, Pranil Chandra, Nicholas D. Cassai, Merkel Cells, Normal and Neoplastic: An Update. Ultrastructural Pathology Volume 29, Number 3-4, 2005 p Merkel cells (MC) occur in the basal epidermal layer, hair follicles, and oral mucosa, as complexes with sensory axons. The axons transduce slowly adapting type I mechanoreception, and MC modulate their sensitivity. MC also determine and maintain the 3- dimensional epidermal structure. They have neuroendocrine granules, rigid spinous processes, and desmosomal junctions with each other and with keratinocytes. Rare MC are dermaWl. Current evidence supports a basal cell origin. Merkel cell carcinomas (MCC) occur mostly in sun- exposed skin in old age. Trabecular, intermediate, or small cell in pattern, MCC have neuroendocrine granules, intercellular junctions, rigid spinous processes, and a paranuclear collection of intermediate filaments staining for cytokeratin 20. Most MCC behave indolently, but those with the small cell pattern, and some with the intermediate pattern, are aggressive and rapidly fatal.

28 28 Kératinocyte Cellule de lépiderme Synthétise des filaments intermédiaires de kératine Donne sa dureté à lépiderme A une forme différente en fonction de sa hauteur dans lépithélium

29 29 Fig Épiderme de souris (colonnes de cellules hexagonales) cellules dendritiques (=de Langerhans), mélanocytes, Merckel ne sont pas représentées Mitoses présentes que dans la couche basale quand lépithélium est fin

30 30 Les couches de lépiderme 1.Couche basale 2.Couche des cellules à épines 3.Couche granuleuse 4.Couche claire 5.Couche squameuse 6.Couche desquamante

31 Couche basale Stratum basal Stratum germinativum La plus interne En contact avec la lame basale La seule à se diviser

32 Couche des cellules à épines Stratum spinosum Nombreux desmosomes Nombreux filaments intermédiaires de kératine épines visibles en microscopie optique

33 33 Couche des cellules à épines

34 34 Couche des cellules à épines

35 35 The epidermis, which provides a protective barrier that undergoes a constant renewal, is a multi-layered tissue with the proliferating cells located in the basal layer. As cells leave the basal layer the underog significant differentiation, biochemical and morphological remodeling. The final differentiation results in the formation of corneocytes. In vitro keratinocytes mimic this process. Several genes mark keratinocyte specific differentiation. Among the most frequently tracked markers are Transglutaminase, Cystatin and Involucrin. The keratinocyte differentiation studies have identified and provided significant detail regarding the involvement of three of the 4 major MAP kinase pathways (see MAPKinase Signaling Pathway ) from several diverse stimuli such as EGF, FAS, TNF and Calicium influx. The p38 cascade is represented twice since both p38alpha (p38) and p38delta (MAPK13) are involved. The keratinocyte differentiation cascased also provide for detailed study of the functions of individual PKC isoforms. It is interesting to note the contrasting functions of the PKC isoforms in this process. In recent studies it has been determined that the cPKC (conventional/classical Protein Kinase C) isoforms, which are calcium-, phospholipid-, and diacylglycerol- dependent are inhibitory where as the nPKC (novel Protein Kinase C) isoforms which are calcium independent are stimulatory for keratinocyte differentiation markers. MAPKinase Signaling Pathway On the right hand side is an earlier step showing the upregulation loop of TRAF2. This step occurs prior to the activation os ASK1 and the p38 cascade. Différenciation du kératinocyte

36 36 Cellules à épines

37 Couche granuleuse Stratum granulosum Fine couche de cellules sombres Présence de grains dans la cellule Soudure des cellules entre elles Étanchéité de la peau Frontière entre les couches internes métaboliquement actives et les couches plus superficielles mortes et sans organites

38 38 Couche des cellules granuleuses

39 39 Couche des cellules granuleuses

40 40 Couche des cellules granuleuses

41 41 Couche des cellules granuleuses

42 42 Cellule granuleuse

43 Couche claire Stratum lucidum

44 44 Couche claire

45 45 Cellule de la couche claire

46 Couche cornée Stratum corneum Squames de cellules très aplaties Très tassées les unes contres les autres Remplies de kératine dense et compacte Couche de protéines qui double la face cytosolique de la membrane plasmique –Dure et fine (12 nm) –Contient de linvolucrine cytosolique Limites intercellulaires presque invisibles en microscopie optique

47 47 Couche cornée

48 48 Couche cornée

49 49 Couche cornée

50 Couche desquamante Stratum disjunctum

51 51 Couche desquamante

52 52 Couche desquamante

53 53 Aspects dynamiques de lépiderme Production de nouvelles cellules dans la couche basale –Restent dans la couche basale –Commencent le voyage vers lextérieur Arrivées à la couche granulaire –Perdent leur noyau et leurs organites cytoplasmiques –Par activation partielle de lapoptose Deviennent des squames de kératine Tombent dans la poussière 1 mois entre la naissance et la desquamation

54 54 Modifications moléculaires Kératines –Présentes en grande quantité dans toutes les couches de lépiderme –Grande famille de gènes homologues –Nombre de variétés encore augmenté par épissage alternatif –Bascule dun type de kératine à un autre au cours du voyage de la cellule vers lextérieur Involucrine : synthétisée en même temps, dans le cadre dune différenciation cellulaire terminale

55 55 Différenciation cellulaire terminale Programme de différenciation cellulaire coordonné Une cellule précurseur acquière ses caractéristiques spécifiques ultimes et cesse de se diviser Ce programme est initié dans la couche basale de lépiderme

56 56 Rôle des cellules souches de la couche basale dans le renouvellement de lépiderme Il faut remplacer lépiderme un millier de fois au cours de la vie Des cellules de la couche basale –Doivent rester indifférenciées –Doivent sauto-renouveler –Doivent continuer à se diviser pour maintenir le réservoir de cellules souches –Doivent donner une descendance qui se différencie jusqu'à la fin –Contiennent des cellules dont la descendance cellules indifférenciées comme les parents ET cellules différenciées –Cest ce quon appelle des cellules souches

57 57 Propriétés permettant de définir une cellule souche Elle nest pas dans un état de différenciation terminale Elle peut se diviser indéfiniment (tout au moins pendant la durée de vie de lindividu) pas nécessairement rapidement Quand elle se divise, chaque cellule a un choix –Rester une cellule souche –Entrer dans un cursus de différenciation terminale

58 58 fig Définition dune cellule souche : 2 sorts après division –Rester une cellule souche –Se différencier (nombreuses divisions avant la différenciation terminale)

59 59 Division des cellules souches Doivent se diviser Pas nécessairement rapidement En général lentement Se divisent quand il faut remplacer des cellules en différenciation terminale qui ne peuvent pas elles-mêmes se diviser Il y en a de nombreux types –Cellules souches épidermiques –Cellules souches intestinales –Cellules souches sanguines –Cellules souches….

60 60 Problématique des cellules souches Quest ce qui détermine si elle doivent rester quiescentes ou se diviser ? Qui décide si une cellule fille doit rester cellule souche ou entrer dans une voie de différenciation terminale ? Quelle voie de différenciation suivre lorsquil y en a plusieurs (comme cest souvent le cas)

61 61 Maintien dune population stable de cellules souches Exactement 50 % de la descendance de la population de cellules souches doit rester cellules souches à létat de repos Deux modes 1.Asymétrie environnementale 2.Asymétrie de la division

62 Asymétrie environnementale Cellule souche deux cellules filles identiques dont lenvironnement gouverne le sort ultérieur –50 % cellules souches –50 % cellules qui vont se différencier Souvent cellule souche deux cellules filles à devenir identique

63 Asymétrie de la division Cellule souche deux cellules filles toujours asymétriques –1 cellule = caractère de cellule souche –1 cellule = entrée dans la voie de différenciation pas de possibilité daugmentation du nombre de cellules souches toute perte de cellule souche est irréparable

64 64 Fig 22-5 Production de 2 devenirs de cellules filles par une cellule souche

65 65 Réparation dune perte de substance épidermique Migration et prolifération des cellules épidermiques avoisinantes et Augmentation du nombre de cellules souches = Divisions symétriques –1 cellule souche 2 cellules souches…

66 66 Régulation du nombre de cellules de la population de cellules souches Par la lame basale ? Perte de contact déclenchant la différenciation terminale Maintien du contact pour préserver le stock de cellules souches

67 67 Kératinocytes basaux en culture Nouvelles cellules basales… Cellules en différenciation terminale

68 68 … nouvelles cellules basales Paraissent toutes indifférenciées Mais grandes variations de capacité de prolifération : une cellule basale en culture Incapable de se diviser Quelques divisions Grandes colonies En fonction de lexpression dintégrine1 Intégrine 1 élevée = cellules de la couche basale = cellules souches

69 69 Fig 22-6 Cellules basales marquées avec lintégrine 1 Cellules en voie de différenciation en kératinocytes marquées par la kératine 10 Cellules en division parquées par le BrdU Les cellules souches prédominent au contact des papilles dermiques Les divisions des cellules souches ne sont pas fréquentes Et donnent les cellules de transition en cours damplification Qui se divisent souvent Puis se différencient vers le haut Cellules basales marquées avec lintégrine 1 Cellules en voie de différenciation en kératinocytes marquées par la kératine 10 Cellules en division parquées par le BrdU Les cellules souches prédominent au contact des papilles dermiques Les divisions des cellules souches ne sont pas fréquentes Et donnent les cellules de transition en cours damplification Qui se divisent souvent Puis se différencient vers le haut

70 70 « Cellules de transition en amplification » Cellules basales Exprimant peu lintégrine 1 Capable de se diviser un peu Puis de quitter la lame basale Pour suivre la voie de différenciation terminale « de transition » : entre caractère de cellule souche et caractère de cellule différenciée « en amplification » : amplification de la descendance résultant de la division dune cellule souche

71 71 Fig 22-7 « Cellules de transition en amplification » –La cellule souche se divise peu –mais donne des cellules destinées à se différencier –et qui se diviseront plus rapidement. –Ici chaque cellule souche donnera 8 descendants différenciés

72 72 Rôle de la lame basale Il existe aussi quelques cellules restant en contact avec la lame basale -qui ne se divisent plus -qui commencent à se différencier La lame basale nest pas suffisante pour contrôler le devenir dune cellule basale épidermique

73 73 Rôle de la lame basale Dans une culture en suspension des kératinocytes de la couche basale arrêtent de se diviser et de se différencier Nécessité dun support (lame basale ou matrice extra-cellulaire) La lame basale représente une limite à la croissance infinie des cellules souches (application au cancer)

74 74 Renouvellement de lépiderme Apparemment simple En fait nombreux points de contrôle

75 75 Points de contrôle du renouvellement de lépiderme Le taux de multiplication des cellules souches La probabilité quune cellules fille reste une cellule souche Le nombre de divisions des cellules de transition en amplification Le temps mis pour quitter la lame basale Le temps mis pour achever le programme de différenciation Le temps mis pour desquamer

76 76 Résultat du contrôle Réponse aux agressions Augmentation de lépaisseur de lépiderme Réparation des blessures Follicules pileux

77 77 Mécanismes de régulation Très nombreux Mécanismes de communication cellulaire Signalisation intercellulaire entre les cellules de lépiderme Signalisation entre épiderme et derme

78 78 Mécanismes de régulation EGF FGF Wnt (mutation dans la voie cancer) Voie Hedgehog (mutation dans la voie cancer) Voie Notch BMP/TGF

79 79 Les voies de signalisation Activation de Wnt Favorise le maintien des caractères de cellules souches Inhibe le passage vers les « cellules de transition en amplification » Activation de Notch (fait linverse) Inhibe le maintien des caractères de cellules souches Active le passage vers les « cellules de transition en amplification » TGF : rôle clé dans la signalisation vers le derme pour la réparation des plaies

80 80 Rôle des intégrines Intégrines maintenues artificiellement hautes dans les couches superficielles de souris transgéniques Augmentation de la prolifération des cellules de la couche basale Épaississement de lépiderme Élimination des kératinocytes au bout dune semaine Avant leur kératinisation complète Sorte de psoriasis humain

81 81 Un cas particulier de renouvellement : la glande mammaire À côté des kératinocytes dautres cellules se développent à partir de lépiderme de lembryon dans certaine parties du corps Invaginations de lépiderme glandes enfoncées en profondeur Sudoripares Lacrymales Salivaires Mammaires Même origine que lépiderme mais Grandes différences dans Fonctions Mode de renouvellement

82 82 Proposed evolution of the mammary gland from a mucus- secreting epithelial gland. Mammary glands presumably evolved as mucus-secreting skin glands that similar to many mucus surface epithelia secreted antimicrobial enzymes such as XOR and lysozyme. The evolution of additional functions of XOR and lysozyme in the ancient mammary epithelium resulted in the secretion of fat droplets, α- lactalbumin and lactose. Consequently, the mammary gland evolved from a protective immune organ into a reproductive organ unique to the class mammalia.

83 83 Généralités sur la glande mammaire Glandes sécrétrices Définissent les mammifères Intérêts Nourriture des bébés Caractère sexuel secondaire Industrie de lait Cancer fréquent Biologie du développement…

84 84 …Intérêt en biologie du développement Les processus du développement continuent chez ladulte Équilibre entre développement et apoptose chez ladulte

85 85 Cycle de la glande mammaire Production de lait à la naissance du nouveau-né Arrêt de la production de lait au sevrage

86 86 Histologie de la glande mammaire au repos Système de canaux ramifiés entourés de tissu adipeux

87 87 Canaux Épithélium comprenant une sous population de cellules souches

88 88 Glande mammaire au repos

89 89 Glande mammaire au repos

90 90 Glande mammaire prépubère

91 91 Pendant la grossesse Hormones circulantes Prolifération des cellules des canaux Nombre des canaux X 10 ou X 20 Croissance et ramifications des extrémités des canaux dilatations = Petits alvéoles appelés acini

92 92 Glande mammaire

93 93 Pendant la lactation Protéines : exocytose Lipides: gouttelettes entourées de membrane plasmique

94 94 D. B. Shennan and M. Peaker Transport of Milk Constituents by the Mammary Gland Physiological Reviews, Vol. 80, No. 3, July 2000, pp Shennan, D. B. et al. Physiol. Rev. 80: Copyright ©2000 American Physiological Society Les 5 principales voies de sécrétion à travers épithélium sécrétoire du sang vers le lait (4 trans cellulaires et 1 para cellulaire) 1) Voie membranaire 2) Voie golgienne 3) milk fat route 4) Transcytose 5) Voie para cellulaire

95 95 Glande mammaire en lactation

96 96 Glande mammaire en lactation

97 97 Glande mammaire en lactation

98 98 Glande mammaire en lactation

99 99 La lactation Déclenchement par une combinaison dhormones Succion du mamelon par libération docytocine par lhypothalamus Ocytocine agit sur les cellules myoépithéliales (même origine épithéliale que les cellules sécrétrices)

100 100 Glande mammaire en lactation

101 101 Sevrage du nouveau né Mort des cellules sécrétrices par apoptose Disparition des acini Élimination des cellules mortes par les macrophages Retour à létat de repos : fin de la lactation…

102 102 Fin de la lactation Brutale Induite par laccumulation de lait (pas hormonal) Si un canal se bouche pas dexcrétion de lait mort des cellules sécrétrices par apoptose Les autres lobules continuent à fonctionner

103 103 Apoptose des cellules sécrétrices Déclenchement par des facteurs dont le TGF 3 Qui saccumule où la sécrétion est bloquée

104 104 fig Mort des cellules sécrétrices à larrêt de la succion A.Lactation normale (TGF 3 -) B.Arrêt de la succion depuis 9 heures (TGF 3 -) C.Canal obstrué depuis 3 jours (mort des cellules par apoptose)

105 105 Rôle du TGF 3 Arrêt de la succion Pas de drainage du lait Production de TGF 3 Apoptose Régression des canaux

106 106 Andrew V. Nguyen and Jeffrey W. Pollard Transforming growth factor 3 induces cell death during the first stage of mammary gland involution Development 127, (2000) In situ hybridization and immunohistochemistry for TGFb3 in mammary glands at D1PP. (A,B) Sagittal sections of Csfmop/Csfmop involuting mammary glands hybridized with (A) antisense or (B) senseTGFb3 probe. (C,D) Sections of +/Csfmop mammary gland isolated from a mother that had not suckled for 9 hours (C) or still feeding (D) reacted with antibody specific for TGFb3 protein. (E) Sections of +/Csfmop mammary gland from a mother that had not suckled for 9 hours treated with IgG as a control. (F) +/Csfmop mammary gland not suckled for 9 hours treated with the antibody specific for TGFb3 protein but that had been immunodepleted with excess TGFb3 peptide. Arrowheads in A and C indicate TGFb3 positive epithelial cells.

107 107 Andrew V. Nguyen and Jeffrey W. Pollard Transforming growth factor 3 induces cell death during the first stage of mammary gland involution Development 127, (2000) Apoptosis in mammary glands at day 1 postpartum. Sagittal sections were analyzed for apoptosis using TUNEL staining. (A) +/Csfmop; (B) Csfmop/Csfmop; (C) +/Csfmop not suckled for 9 hours; (D) sealed mammary gland from +/Csfmop feeding dam for 1 day; (E) sealed mammary gland from +/Csfm op feeding dam for 3 days; (F) contralateral gland from +/Csfmop feeding dam for 3 days. Note that the Csfmop/Csfmop mammary gland is fully in the process of involution. Arrowheads point to apoptotic cells. Inset (B,E) shows a higher magnification of apoptotic cells.

108 108 Signalisation dans la glande mammaire en croissance Hormones Signaux –Entre les cellules épithéliales –Entre le tissu conjonctif et lépithélium (= stroma) –Les mêmes que dans lépiderme Intégrines : si on supprime la lame basale pas dactivation de la voie de lintégrine la cellule épithéliale ne répond plus aux stimulations hormonales Tous les autres facteurs…

109 109 Application Cancer


Télécharger ppt "Vie et mort des cellules dans les tissus I.L'épiderme et son renouvellement par les cellules souches II.Épithélium sensoriel III.Voies aériennes et intestin."

Présentations similaires


Annonces Google