La présentation est en train de télécharger. S'il vous plaît, attendez

La présentation est en train de télécharger. S'il vous plaît, attendez

Journée IREM/APMEP du 11 avril 2006Hasard et probabilités – Quelques problèmes historiques Les quelques problèmes abordés Léquiprobabilité : - problème.

Présentations similaires


Présentation au sujet: "Journée IREM/APMEP du 11 avril 2006Hasard et probabilités – Quelques problèmes historiques Les quelques problèmes abordés Léquiprobabilité : - problème."— Transcription de la présentation:

1 Journée IREM/APMEP du 11 avril 2006Hasard et probabilités – Quelques problèmes historiques Les quelques problèmes abordés Léquiprobabilité : - problème du Duc de Toscane résolu par Galilée - article « Croix ou Pile » de dAlembert - définition de Laplace de la probabilité Le problème des partis : - correspondance entre Pascal et Fermat - acte de naissance de la théorie des probabilités Le paradoxe de Condorcet Différentes conceptions du hasard 1

2 Journée IREM/APMEP du 11 avril 2006Hasard et probabilités – Quelques problèmes historiques La préhistoire Jeux avec des astragales et des dés en Mésopotamie et dans lancienne Egypte. Réflexions sur le hasard chez plusieurs philosophes grecs : Aristote, Démocrite,… Existence des rentes viagères depuis la Rome antique. Création de Bourses aux XIIIème et XIVème siècles pour assurer le risque dans les transports maritimes. Nombreux travaux sur le dénombrement chez les Chinois, les Arabes et à partir du XIVème siècle en Occident. 2

3 Journée IREM/APMEP du 11 avril 2006Hasard et probabilités – Quelques problèmes historiques Des débuts très tardifs Le concept de probabilté napparaît quau XVIème siècle. Pourquoi si tard ? Les interdits religieux, les superstitions,… Les mathématiques : science exacte, immobile et immuable. 3

4 Journée IREM/APMEP du 11 avril 2006Hasard et probabilités – Quelques problèmes historiques Les premiers écrits Jérôme CARDAN ( ) : De ludo aleae, traité écrit vers 1560, mais publié seulement en GALILEE ( ) : Sulla scoperta dei dadi, écrit vers 1620, mais publié seulement en 1656 ; ce petit mémoire contient une solution du célèbre problème du Grand Duc de Toscane. Document 1 4

5 Journée IREM/APMEP du 11 avril 2006Hasard et probabilités – Quelques problèmes historiques Lacte de naissance officiel : la correspondance entre Pascal et Fermat de 1654 Pierre de FERMAT ( ) : sa correspondance avec Pascal nest publiée quen Blaise PASCAL ( ) : son Traité du triangle arrithmétique nest publié quen La correspondance entre Pascal et Fermat porte sur le problème des partis 5

6 Journée IREM/APMEP du 11 avril 2006Hasard et probabilités – Quelques problèmes historiques Le problème des partis Deux joueurs sengagent dans des parties successives dun jeu, mais il y a interruption avant que lun deux ait gagné le nombre de parties assigné pour la victoire. Le problème est de « faire le parti », cest-à-dire le partage de largent misé. En fait, il sagit dun habillage de problèmes juridiques de partage ou dindemnisation : calcul de rentes, dhéritages, dassurance… 6

7 Journée IREM/APMEP du 11 avril 2006Hasard et probabilités – Quelques problèmes historiques Avant Pascal et Fermat Plusieurs mathématiciens italiens ont proposé des solutions : - Luca PACIOLI en 1494, - Nicolo TARTAGLIA en 1539, - Lorenzo FORESTANI en Mais rien de satisfaisant : Pacioli, par exemple, propose de répartir les mises proportionnellement aux nombres de parties déjà gagnées ! Cardan critiquera Pacioli… et proposera une répartition proportionnelle aux nombres de parties restant à gagner ! 7

8 Journée IREM/APMEP du 11 avril 2006Hasard et probabilités – Quelques problèmes historiques La version simplifiée de Pascal Deux joueurs misent chacun 32 pistoles. Ils jouent une série de parties dun jeu de hasard équitable. Le premier qui gagne trois parties emporte les 64 pistoles. Mais le jeu est interrompu alors que le premier joueur a gagné deux parties et lautre une. Comment les 64 pistoles doivent-elles être réparties ? Document 2 8

9 Journée IREM/APMEP du 11 avril 2006Hasard et probabilités – Quelques problèmes historiques Solution de Pascal 3 – 1 2 – 2 2 – 1 3 – 0 2 – 0 1 – 1 1 – 0 9

10 Journée IREM/APMEP du 11 avril 2006Hasard et probabilités – Quelques problèmes historiques Solution de Fermat /4 + 2/8 + 3/16 = 11/16 10

11 Journée IREM/APMEP du 11 avril 2006Hasard et probabilités – Quelques problèmes historiques Pascal et la récurrence « Quoique cette proposition ait une infinité de cas, je la démontrerai néanmoins en peu de mots par le moyen de deux lemmes. Le 1er, que la seconde base contient les partis des joueurs auxquels il manque deux parties en tout. Le 2ème, que si une base quelconque contient les partis de ceux auxquels il manque autant de parties qu'elle a de cellules, la base suivante sera de même, c'est-à-dire qu'elle contiendra aussi les partis des joueurs auxquels il manque autant de partis qu'elle a de cellules. D'où je conclus en un mot que toutes les bases du Triangle arithmétique ont cette propriété ; car la seconde l'a par le premier lemme ; donc par le second lemme, la troisième l'a aussi, et par conséquent la quatrième ; et aussi à l'infini. » 11

12 Journée IREM/APMEP du 11 avril 2006Hasard et probabilités – Quelques problèmes historiques Le premier traité publié : Huygens Christian HUYGENS ( ) publie dès 1657 « De ratiocinis in ludo aleae » : on y trouve la notion despérance mathématique (du latin « expectatio »). Huygens applique le calcul des probabilités à la résolution de problèmes de statistiques sociales. Il utilise une table de mortalité pour calculer des probabilités conditionnelles et une espérance de vie. Document 3 12

13 Journée IREM/APMEP du 11 avril 2006Hasard et probabilités – Quelques problèmes historiques Les doutes de dAlembert Jean LE ROND DALEMBERT ( ) DAlembert ne conçoit pas lindépendance dans une répétition de lancers de pièces : la sortie de plusieurs piles cosécutifs rendrait plus probable la sortie dun face au coup suivant. Il rédige (vers 1760) larticle « croix ou pile » pour lEncyclopédie. Document 4 13

14 Journée IREM/APMEP du 11 avril 2006Hasard et probabilités – Quelques problèmes historiques La définition de Laplace Pierre-Simon LAPLACE ( ) Extraits de son Essai philosophique sur les probabilités : « La probabilité est le rapport du nombre de cas favorables à celui de tous les cas possibles. » « Mais cela suppose les différents cas également possibles. » « Sils ne le sont pas, on déterminera dabord leurs possibilités respectives dont la juste appréciation est un des points les plus délicats de la théorie des hasards. » « Alors la probabilité sera la somme des possibilités de chaque cas favorable. » 14

15 Journée IREM/APMEP du 11 avril 2006Hasard et probabilités – Quelques problèmes historiques Principe de Condorcet 1. On compare les candidats deux à deux. 2. On dit que a est « socialement meilleur » que b si une majorité de votants préfèrent a à b. 3.Si un des candidats est socialement meilleur que tous les autres, il est élu : cest le Vainqueur de Condorcet. ( Sil existe, il est unique ! ) 15

16 Journée IREM/APMEP du 11 avril 2006Hasard et probabilités – Quelques problèmes historiques Remarques 1. Les systèmes électoraux anglais et français peuvent violer le principe de Condorcet. 2.Dans le système anglais, il est même possible que soit élu un « perdant de Condorcet » (candidat « socialement pire » que tous les autres). 16

17 Journée IREM/APMEP du 11 avril 2006Hasard et probabilités – Quelques problèmes historiques Exemple 1 3 candidats : a, b et c. 100 votants dont les préférences sont : - pour 45 votants : a P b P c - pour 30 votants : b P c P a - pour 25 votants : c P b P a Quels sont les vainqueurs ? Le vainqueur anglais est a.Le vainqueur français est b. Le vainqueur de Condorcet est b : 75/100 sur c, 55/100 sur a. Le vainqueur anglais, a, est le perdant de Condorcet : 45/100 sur b, 45/100 sur c. 17

18 Journée IREM/APMEP du 11 avril 2006Hasard et probabilités – Quelques problèmes historiques Exemple 2 4 candidats : a, b, c et d. 100 votants dont les préférences sont : - pour 45 votants : b P a P c P d - pour 30 votants : c P a P d P b - pour 25 votants : a P d P b P c Quels sont les vainqueurs ? Le vainqueur anglais est b.Le vainqueur français est b. Le vainqueur de Condorcet est a : 55/100 sur b, 70/100 sur c, 100/100 sur d. 18

19 Journée IREM/APMEP du 11 avril 2006Hasard et probabilités – Quelques problèmes historiques Paradoxe de Condorcet Le principe de Condorcet peut sembler attrayant… MAIS… Sa mise en œuvre est complexe. Le vainqueur de Condorcet nexiste pas toujours ! Cest le paradoxe de Condorcet : la relation de préférence sociale nest pas transitive ! 19

20 Journée IREM/APMEP du 11 avril 2006Hasard et probabilités – Quelques problèmes historiques Exemple 3 3 candidats : a, b et c. 3 votants dont les préférences sont : - pour le 1er : a P b P c - pour le 2ème : b P c P a - pour le 3ème : c P a P b Il ny a pas de vainqueur de Condorcet car… a est préféré socialement à b, b est préféré socialement à c, c est préféré socialement à a. 20

21 Journée IREM/APMEP du 11 avril 2006Hasard et probabilités – Quelques problèmes historiques Quelques conceptions du hasard - Le hasard-rencontre - Le hasard-ignorance - La hasard-complexité - Le hasard microscopique - Le hasard généré 21

22 Journée IREM/APMEP du 11 avril 2006Hasard et probabilités – Quelques problèmes historiques Le hasard-rencontre Cette conception, présente chez Aristote, est reprise par Antoine-Augustin COURNOT ( ) : « Les événements amenés par la combinaison ou la rencontre dautres événements qui appartiennent à des séries indépendantes les unes des autres, sont ce quon nomme des événements fortuits ou des résultats du hasard. » 22

23 Journée IREM/APMEP du 11 avril 2006Hasard et probabilités – Quelques problèmes historiques Exemple littéraire du hasard-rencontre Extrait de Linsoutenable légèreté de lêtre de Milan KUNDERA : « Sept ans plus tôt, un cas difficile de méningite sétait déclaré par hasard à lhôpital de la ville où habitait Teresa, et le chef de service où travaillait Thomas avait été appelé durgence en consultation. Mais, par hasard, le chef de service avait une sciatique, il ne pouvait pas bouger, et il avait envoyé Thomas à sa place dans cet hôpital de province. Il y avait cinq hôtels dans la ville, mais Thomas était descendu par hasard dans celui où travaillait Tereza. Par hasard, il avait un moment à perdre avant le départ du train et il était allé sasseoir dans la brasserie. Tereza était de service par hasard et servait par hasard la table de Thomas. Il avait donc fallu une série de six hasards pour pousser Thomas jusquà Tereza, comme si, laissé à lui-même, rien de ly eût conduit. » 23

24 Journée IREM/APMEP du 11 avril 2006Hasard et probabilités – Quelques problèmes historiques Le hasard-ignorance Cest la conception déterministe. Voltaire : « Ce que nous appelons hasard nest et ne peut être que la cause ignorée dun effet connu. » Laplace : « Nous devons envisager létat présent de lUnivers comme leffet de son état antérieur, et comme la cause de celui qui va suivre. » Einstein : « Dieu ne joue pas aux dés avec lUnivers. » 24

25 Journée IREM/APMEP du 11 avril 2006Hasard et probabilités – Quelques problèmes historiques Le hasard-complexité Henry POINCARE : « Une cause très petite, qui nous échappe, détermine un effet considérable que nous ne pouvons pas ne pas voir, et alors nous disons que cet effet est dû au hasard. » Emile BOREL : « La caractéristique des phénomènes que nous appelons fortuits, ou dus au hasard, cest de dépendre de causes trop complexes pour que nous puissions les connaître toutes et les étudier. » 25

26 Journée IREM/APMEP du 11 avril 2006Hasard et probabilités – Quelques problèmes historiques Le hasard microscopique - En mécanique statistique :- dynamique des gaz - désintégration radioactive - En biologie : rôle du hasard dans les mutations de lADN - En physique quantique : le hasard intrinsèque à la théorie 26

27 Journée IREM/APMEP du 11 avril 2006Hasard et probabilités – Quelques problèmes historiques Le hasard généré Tables de nombres aléatoires Générateurs arithmétiques : méthodes de congruence linéaire plus ou moins raffinées Générateurs quantiques fondés sur : - la mesure de la désintégration datomes radioactifs - lenvoi de photons sur un miroir semi-réfléchissant 27


Télécharger ppt "Journée IREM/APMEP du 11 avril 2006Hasard et probabilités – Quelques problèmes historiques Les quelques problèmes abordés Léquiprobabilité : - problème."

Présentations similaires


Annonces Google