La présentation est en train de télécharger. S'il vous plaît, attendez

La présentation est en train de télécharger. S'il vous plaît, attendez

Les figures équivalentes.. Les figures équivalentes ont les propriétés suivantes: - des figures planes ( 2 D ) qui ont la même aire sont dites équivalentes;

Présentations similaires


Présentation au sujet: "Les figures équivalentes.. Les figures équivalentes ont les propriétés suivantes: - des figures planes ( 2 D ) qui ont la même aire sont dites équivalentes;"— Transcription de la présentation:

1 Les figures équivalentes.

2 Les figures équivalentes ont les propriétés suivantes: - des figures planes ( 2 D ) qui ont la même aire sont dites équivalentes; - des solides ( figures 3D ) qui ont le même volume sont dits équivalents. Ces figures nont pas besoin davoir la même forme.

3 Exemple:Prenons deux droites parallèles et dessinons à lintérieur différents triangles ayant tous la même base. Déplaçons-les le long des parallèles. Tous ces triangles ont la même mesure de base. Traçons leur hauteur. Ils ont tous la même mesure de hauteur. donc ils ont tous la même aire. mais pas la même forme.

4 Cette propriété déquivalence nous servira pour déduire certaines informations. Exemple 1 : Que vaut la longueur dun rectangle équivalent à un triangle dont la base vaut 8 cm et la hauteur 10 cm, si la largeur du rectangle est de 2 cm ? Trouvons laire du triangle : B X H = 2 8 cm X 10 cm = 2 40 cm 2 Laire du rectangle est donc de 40 cm 2 car il est équivalent au triangle. Longueur du rectangle :Aire = largeur 40 cm 2 = 2 cm 20 cm

5 Exemple 2 : Que vaut larête dun cube équivalent à un prisme dont les dimensions sont 25 cm X 8 cm X 5 cm ? Volume du prisme : 25 cm X 8 cm X 5 cm =L X l X h =1 000 cm 3 Arête du cube : volume = cm 3 = 10 cm Le volume du cube est donc de 1000 cm 3 car il est équivalent au prisme. 25 cm 8 cm 5 cm ?

6 Quelques constatations : Pour une même aire, le plus petit périmètre est celui de la figure régulière. Étudions plusieurs rectangles ayant la même aire et observons le périmètre. DimensionsAirePérimètre 2 cm X 50 cm 100 cm cm 4 cm X 25 cm100 cm 2 58 cm 10 cm X 10 cm 100 cm 2 5 cm X 20 cm 100 cm 2 50 cm 40 cm 1 cm X 100 cm 100 cm cm Remarque : Une figure régulière est une figure dont tous les côtés ont la même mesure. donc le carré, figure régulière, a le plus petit périmètre.

7 Pour une même aire, plus le nombre de côtés dune figure régulière augmente, plus le périmètre diminue. Exemple: Prenons 6 figures équivalentes ayant chacune une aire de 120 unités 2 49,443,841,740,739,938,8 et calculons le périmètre de chacune (mesures arrondies au dixième ). Pour une même aire, la figure régulière ayant le plus petit périmètre est le cercle. Remarque 1: On peut parler du périmètre dun cercle car ce dernier est considéré comme étant un polygone ayant une infinité de côtés. Remarque 2: La réciproque de cet énoncé est: Pour un périmètre donné, la figure régulière, ayant le plus grand nombre de côtés, a laire la plus grande.

8 Pour un volume donné, le prisme rectangulaire qui a la plus petite aire totale est le cube Exemple: Pour un volume de unités cubes Aire totale : Aire des bases + Périmètre base X hauteur 730 : : :

9 Pour une même aire totale, le solide régulier qui a le plus grand nombre de côtés a le plus grand volume donc pour une même aire totale, le solide régulier qui a le plus grand volume est la boule. Sur le marché, les contenants ont des formes diverses. Plusieurs de ces formes sont équivalentes, cest-à-dire quelles ont le même volume. Dans lindustrie, pour un même volume donné, on recherche souvent les formes qui ont la plus petite aire totale pour minimiser les coûts.


Télécharger ppt "Les figures équivalentes.. Les figures équivalentes ont les propriétés suivantes: - des figures planes ( 2 D ) qui ont la même aire sont dites équivalentes;"

Présentations similaires


Annonces Google