La présentation est en train de télécharger. S'il vous plaît, attendez

La présentation est en train de télécharger. S'il vous plaît, attendez

1 Partie 2 : programmation stochastique. 2 Programmation stochastique : principes Hypothèses : lincertitude influence la valeur des solutions plus que.

Présentations similaires


Présentation au sujet: "1 Partie 2 : programmation stochastique. 2 Programmation stochastique : principes Hypothèses : lincertitude influence la valeur des solutions plus que."— Transcription de la présentation:

1 1 Partie 2 : programmation stochastique

2 2 Programmation stochastique : principes Hypothèses : lincertitude influence la valeur des solutions plus que leur structure. Chaque scénario induit donc une fonction différente à optimiser. Il est possible dassocier une probabilité à chaque scénario. méthode : considérer lespérance de la valeur des solutions comme une fonction unique, pour se ramener à un seul problème doptimisation Simplification : par une simulation, un échantillonnage des scénarios est réalisé, et lespérance est approchée par la moyenne

3 3 Programmation stochastique : trivial? Seuls les coûts sont sujets à incertitudes. Exemple de fonction linéaire : il suffit de remplacer les coûts unitaires par leurs espérances ?!

4 4 En fait, lincertitude intervient souvent de manière plus subtile : elle modifie la forme même de la fonction à optimiser De plus, dans de nombreuses applications une partie des décisions sont prises dans un premier temps, les autres plus tard : modèle en 2 phases. Doù : programmation stochastique en 2 phases.

5 5 Planification de production en deux phases Première Application : (wallace 00)

6 6 contexte Une entreprise darmement est candidate pour la fabrication dun nouveau type dobus. Les contraintes de sécurité nécessitent la construction dun atelier dédié. Cependant la décision de construire latelier doit être prise alors que le prix de vente nest pas encore fixé, il dépend de décisions politiques. Léquipement nécessaire à la production est aussi coûteux. Son prix sera dautant plu élevé quil aura été installé tardivement.

7 7 Contexte, suite On suppose quil y a seulement deux instants de décision : T1 : construction du bâtiment. Son prix est proportionnel à sa surface utile. Immédiatement après on peut y installer léquipement. T2 : le prix dachat du produit est connu. On peut encore installer léquipement mais cela coûte plus cher.

8 8 données Prix de vente en cas de production maximale :p. Le prix effectif est donc de p x, où x = quantité produite La capacité maximale de latelier est normalisé à 1. Coût de construction : 2 c (c capacité effective) Coût dinstallation à T1 : 2 z (z capa installée) Coût dinstallation à T2 : 2.2 y (y capa installée) Contraintes : –On ne peut produire plus que la capa installée. –On ne peut installer plus que la capa de latelier construit.

9 9 exercice Construisez le modèle linéaire associé quand T1=T2. Quelles sont les solutions dominantes pour ce modèle? Quelle est lespérance du coût pour ces solutions? Quelles autres solutions sont possibles? Application : p est uniforme sur [0,9]

10 10 Modèle linéaire Max px – 2c -2z -2.2 y x<= y + z y+z <= c c <= 1 x,y,z,c <=0

11 11 Maximisation des profits dans une chaîne dapprovisionnement simple. Deuxième Application

12 12 Chaîne logistique Producteur 1Producteur 2Grossiste Détaillant Client Final Prix p1p2 p3 p4 Stocks Reprise invendus

13 13 Problématique générale Comment sont fixés les prix dun échelon à lautre ? Comment sont réparties les marges ? Comment sont gérés les stocks ? Quels sont les accords commerciaux entre échelons ? Y a t-il partage de linformation au long de la chaîne logistique ?

14 14 Problématique générale La poursuite d'objectifs indépendants par les divers protagonistes de la chaîne entraîne t- elle une mauvaise coordination préjudiciable à l'efficacité globale ? Est-il possible d'atteindre une efficacité globale tout en préservant une décentralisation des décisions ?

15 15 Une chaîne simplifiée Fournisseur Détaillant w r c p

16 16 Modèle simplifié 2 acteurs : un détaillant qui fait face à un marché, et un fournisseur. Le détaillant vend les articles au prorata de la demande. Les invendus sont perdus. La demande est une variable aléatoire problème classique du marchand de journaux.

17 17 Intégration verticale Le fournisseur est aussi le détaillant. Les données du problème sont les suivantes : Demande D Prix de revient :c Prix de vente :p

18 18 objectifs Lobjectif est la maximisation de lespérance du profit. Si la décision de la firme est de produire q unités, ce profit sécrit f(q) = -cq + p min (D,q) Soit (q) = E(f(q)). On a donc un problème de prog stochastique simple car sans contraintes.

19 19 Espérance de profit l'espérance de profit est Demande inférieure à q Demande supérieure à q : q unités vendues

20 20 Profit maximal La quantité optimale est obtenue en annulant la dérivée du profit : On obtient q* comme solution de l'équation : La valeur est appelée ratio critique.

21 21 Décentralisation simple Le fournisseur et le détaillant sont maintenant deux entités séparées. Le transfert entre les deux se fait à un prix w>c. La position du détaillant est identique à celle de la firme intégrée où le prix de revient c serait remplacé par le prix de transfert w.

22 22 Quantité optimale Le détaillant choisira donc une quantité q 1 telle que Comme on a Perte defficacité globale

23 23 Perte d'efficacité La seule façon de retrouver l'efficacité globale ( ) est que le fournisseur facture son produit à son coût marginal c. Dans ce cas, le fournisseur ne tire aucun profit de la transaction.

24 24 Décentralisation avec contrat de rachat Transfert du risque du détaillant vers le fournisseur. Le détaillant peut alors commander des quantités plus importantes. Contrat de rachat des invendus à un prix r, satisfaisant la condition : Le fournisseur accepte de reprendre les invendus partiellement à son compte.

25 25 Profit réalisé Clause de rachat de (q-x) invendus au prix r

26 26 Maximisation du profit La dérivée de ce terme additionnel est : La quantité optimale à commander est définie par :

27 27 Choix du fournisseur Comme on a Si le fournisseur fixe le prix de rachat r de telle sorte que, il est même possible d'avoir Le fournisseur choisit donc

28 28 Profit du fournisseur Le prix de rachat r(w) est choisi de telle sorte que le détaillant commande q*. Reprise des invendus au prix r(w)

29 29 Profit du fournisseur En remplaçant r(w) par sa valeur, et sachant que, on trouve Soit

30 30 Stabilité du contrat avec clause de rachat La clause de rachat permet de réaliser l'efficacité de la chaîne car q* unités sont vendues. La situation est-elle stable ?

31 31 Interprétation Le profit du fournisseur croît linéairement avec le prix de vente w. Le fournisseur choisira donc de vendre au prix maximum p. Mais le gain s'effectue entièrement au détriment du détaillant. La marge du détaillant est nulle. Cas de figure inverse de celui de la décentralisation simple.

32 32 Situation non stabilisée Si le détaillant ne réalise aucun profit, celui-ci na aucun intérêt à commander au fournisseur. En pratique, la marge laissée aux différents acteurs dépend de la concurrence sur le marché.

33 33 Conclusion L'efficacité d'une chaîne et la juste rétribution des acteurs sont deux objectifs difficilement conciliables. Autres types de contrats : rétributions fixes ou proportionnelles aux ventes, marges arrières,... Tensions inévitables entre les acteurs.

34 34 Références Pasternak, B. Optimal pricing and returns policies for perishable commodities, Management Science, 4: (1985). Cachon G., Competitive supply chain inventory management, dans Quantitative Models for Supply Chain Management, Tayur, S., Ganeshan, R. et Magazine, M.,Kluwer Academic Publisher, Vial J-Ph., Effet de double marginalisation dans une chaîne d'approvisionnement, notes, 2000.

35 35 Gestion de projet : construction dun barrage Troisième Application

36 36 contexte Une entreprise de TPE envisage de répondre à un appel doffre pour la maîtrise dœuvre de la construction dun barrage. Elle doit donner dabord les dates dachèvement des grandes parties du projet.

37 37 contexte La construction est soumise à de nombreux aléas : –Climatiques –Coordination avec les autres entreprises (aménagement intérieur) Lentreprise a identifié N scénarios possibles et leur a attribué des probabilités. Tout retard donnera lieu à des pénalités. Finir en avance est également pénalisant: immobilisation de ressources.

38 38 Modélisation générale : gestion de projet en 2 phases Données : activités (sous projet) de durées pj (incertaines) Contraintes de précédence entre activités Coûts unitaires davance et de retard q-, q+ Coût supplémentaire pour que lactivité i termine une unité de temps plus tôt : di (crashing) B : budget total pour le crashing

39 39 Modélisation Pour chaque scénario w, on connaît la durée effective de lactivité i : pi(w). Variables de décision : dates déchéance pour les activités ti quantité de crashing associée aux activités xi.

40 40 Modélisation Objectif global : min ct + Q(t), Où Q(t) est lespérance des coûts dûs au crashing et aux avance/retard : (w): proba associée au scénario w V(t,w) : coût optimal pour dates t et scénario w


Télécharger ppt "1 Partie 2 : programmation stochastique. 2 Programmation stochastique : principes Hypothèses : lincertitude influence la valeur des solutions plus que."

Présentations similaires


Annonces Google