La présentation est en train de télécharger. S'il vous plaît, attendez

La présentation est en train de télécharger. S'il vous plaît, attendez

Animation pédagogique Arras 1 Mercredi 2 décembre 2009.

Présentations similaires


Présentation au sujet: "Animation pédagogique Arras 1 Mercredi 2 décembre 2009."— Transcription de la présentation:

1 Animation pédagogique Arras 1 Mercredi 2 décembre 2009

2 Consultation de Février 2008 La connaissance des nombres et le calcul constituent des objectifs prioritaires du CP et du CE1. Les automatismes en calcul sacquièrent aussitôt que possible, en particulier la première maîtrise des opérations qui est nécessaire pour la résolution de problèmes. La pratique régulière du calcul mental est indispensable à lacquisition de ces automatismes. Lapprentissage des mathématiques développe la rigueur, limagination et la précision, ainsi que le goût du raisonnement : ces attitudes doivent être sollicitées dans toutes les situations.

3 Le point de vue des chercheurs : Un des buts principaux de l'école est que les élèves acquièrent des connaissances, mais ces connaissances n'ont de valeur et de validité que si elles sont utilisables par les élèves. En mathématiques, l'utilisation des connaissances se manifeste à travers la résolution de problèmes et, pour qu'un élève investisse ses connaissances dans la résolution de problèmes, il faut que les connaissances aient pris du sens au moment de leur apprentissage… (Roland Charnay, nov 2004)

4 Texte définitif de juin Lapprentissage des mathématiques développe la rigueur, limagination et la précision, ainsi que le goût du raisonnement. La connaissance des nombres et le calcul constituent les objectifs prioritaires du CP et du CE1. La résolution de problèmes fait lobjet dun apprentissage progressif et contribue à construire le sens des opérations. Conjointement, une pratique régulière du calcul mental est indispensable. De premiers mécanismes sinstallent. Lacquisition des mécanismes en mathématique est toujours associée à une intelligence de leur signification.

5 En terme de chiffres… Lenquête PISA : Score moyen des élèves français Compréhension de lécrit Culture mathématique Culture scientifique PISA PISA PISA

6 Les évaluations de CE1 : A noter : Dans le champs des problèmes, on note un fort taux de non-réponses… Dans le champs du calcul, le paramètre « temps » a considérablement joué.

7 Echec à des résolutions de problèmes : Est-ce lié… aux nombres ? à la représentation du problème ? dénombrement écriture Lecture ordre de grandeur sériation conservation techniques Connaissance des nombres mémorisation Evocation association à dautres situations déjà rencontrées reformulation représentation des opérations : leur « sens » TablesPrésence ou absence de nombres aux opérations ? Représentation des ensembles numériques

8 Les obstacles… Lobstacle de la lecture est le premier cité mais dans les faits, ne représente quun faible pourcentage d échec. Lénoncé ne fait pas « sens » pour lenfant ; il ne renvoie à aucune réalité, à aucune évidence. Différents codes sont utilisés simultanément dans un même énoncé : « Six enfants décident doffrir en cadeau une trousse 12 crayons de couleurs et 5 feutres ; ils donnent chacun 3 euros. La trousse coûte seize euros. Ont-ils assez ou pas assez dargent ? Explique pourquoi. »

9 Les obstacles… Problème dévocation : de quoi est-il question, que cherche-ton ? Les représentations mentales des nombres, quelles quelles soient. Le « sens » des opérations. Difficultés directement liées au calcul : calcul mental mal investi, peu ou pas de mémorisation, manque de maîtrise de techniques opératoires…

10 Lien avec le calcul But prioritaire du calcul : les connaissances numériques doivent être au service des problèmes

11 Objectifs pour le cycle 2 : Comprendre la nécessité de disposer dun répertoire structuré de résultats et den mémoriser une partie Savoir puiser dans ce répertoire pour résoudre des problèmes Savoir retrouver des résultats inconnus à partir de résultats connus, soit mentalement, soit par écrit Maîtriser la technique opératoire de laddition Savoir que la calculette permet dobtenir des résultats difficiles à calculer, à condition de lutiliser de manière réfléchie

12 Pour cela, trois moyens de calcul calcul mental calcul instrumenté calcul écrit

13 Calcul mental : définition Entre lénoncé du problème et lénoncé du résultat, on renonce à utiliser toute opération posée, mais on ninterdit pas lusage de lécrit. Lécrit peut donc quand même être présent dans la consigne ou la formulation du résultat.

14 Calcul mental : finalités Mise en place des moyens efficaces de calculer, utiles dans la vie courante. Etablissement et renforcement des connaissances mathématiques sur les nombres, les opérations et leurs propriétés. Elaboration de procédures originales. Aide à la résolution de problèmes. Développer des capacités et des attitudes indispensables : concentration, mémoire

15 Calcul automatisé Il est aussi appelé calcul automatique, ou encore mémorisé. Il sagit ici des tables, des doubles et moitiés usuels, du calcul sur les dizaines et les centaines entières, les compléments à la dizaine supérieure… Nécessité : entraînement, répétition

16 Les conditions de la mémorisation une bonne représentation des nombres une compréhension des opérations mises en jeu la prise de conscience de lintérêt de disposer dun répertoire de résultats la prise de conscience quun répertoire mental est en train de se constituer la capacité à utiliser les connaissances acquises pour obtenir dautres résultats

17 Calcul réfléchi Elaborer une procédure adaptée au calcul proposé. Stratégie et raisonnement sont alors sollicités. Aucune procédure ne simpose a priori, et le plus souvent plusieurs sont possibles. Il est alors indispensable de pouvoir les confronter, les expliciter sans jamais en favoriser lune plus que lautre.

18 Calcul instrumenté Utilisation dune calculette ou dun ordinateur. Les finalités : Elle peut être un outil de calcul capable de réaliser ce que lélève nest pas encore capable de mener à bien seul. Elle est un instrument permettant à lélève de vérifier un calcul qui vient dêtre réalisé mentalement ou par écrit. Elle est enfin support de problèmes et dapprentissage. Exemple : chercher comment obtenir 12 à lécran sans taper ni 1, ni 2.

19 CPCE1 Nombres et Calcul Connaître (savoir écrire et nommer) les nombres entiers naturels inférieurs à 100. Comparer, ranger, encadrer ces nombres. Écrire une suite de nombres dans lordre croissant ou décroissant. Connaître les doubles des nombres inférieurs à 10 et les moitiés des nombres pairs inférieurs à 20. Connaître la table de multiplication par 2. Calculer mentalement des sommes et des différences. Calculer en ligne des sommes, des différences, des opérations à trous. Connaître et utiliser les techniques opératoires de laddition et commencer à utiliser celles de la soustraction (sur les nombres inférieurs à 100) Résoudre des problèmes simples à une opération. Connaître (savoir écrire et nommer) les nombres entiers naturels inférieurs à les comparer, les ranger, les encadrer. Écrire ou dire des suites de nombres de 10 en 10, de 100 en 100, etc Connaître les doubles et les moitiés dusage courant. Mémoriser les tables de multiplication par 2, 3, 4, et 5. Connaître et utiliser des procédures de calcul mental pour calculer des sommes, des différences, des produits. Calculer en ligne des suites dopérations. Connaître et utiliser les techniques opératoires de laddition et de la soustraction (sur les nombres inférieurs à 1000) Résoudre des problèmes relevant de laddition, de la soustraction et de la multiplication. Connaître une technique opératoire de la multiplication … Diviser par 2 ou 5 des nombres inférieurs à 100. Approcher la division de 2 nombres entiers à partir dun problème de partage ou de groupement. Utiliser les fonctions de base de la calculatrice.

20 Des idées pour commencer Techniques liées à laddition : - Ajouter Ajouter Ajouter 9. - Ajouter 8. - Ajouter un multiple de 10 à un nombre à 2 chiffres. - Somme de 2 nombres à 2 chiffres. - Usage des doubles : ; ; - Additionner plusieurs termes : Techniques liées à la soustraction : - Soustraire 10 à un nombre. - Soustraire 9. - Soustraire 8. - Soustraire Chercher le complément à la dizaine, à la centaine. - Soustraire 10 à un nombre à 2 chiffres. Mais pas seulement…

21 Ce que peut être une séance… Dès le CP, des moments spécifiques doivent chaque jour être aménagées pour lentraînement au calcul mental automatisé et pour lexercice du calcul mental réfléchi. 2 fonctionnements possibles, avec des enjeux différents : Des séances brèves de 5 à 10 mn : on cherche à rendre les résultats plus rapidement et plus sûrement disponibles, pour en réduire le « coût ». Lattention est très fortement sollicitée. Des séances plus longues de 15 à 30 mn : on y travaille le calcul réfléchi.

22 Variations… Avec un jeu de cartes (sans les figures) : ladulte tire une carte, la montre : « Trouvez 2 nombres dont le total est … (carte) décomposition additive ladulte montre 2 cartes : «Combien en tout ? » somme 2 joueurs ; on distribue toutes les cartes, en 2 paquets. Chaque joueur aligne les 5 premières cartes de son paquet. Le gagnant est celui qui a le plus grand total comparaison de nombres ladulte tire 2 cartes et les montre : « Quel est le produit de ces nombres ? » multiplication ladulte tire 2 cartes et les affiche : « Calcule le total. Combien pour aller à 20 ? » complément à vingt

23 Autres variations… Travail sur 10, 20 : compléments, décompositions… Un jeu de cartes (sans les figures) : ladulte tire une carte et la montre : « Quel est le complément à 10 ? » Jeu de domino de 36 pièces / En petit groupe : On pose un domino à côté dun déjà posé si la somme des nombres en contact est 10. Une piste contenant 9 cases numérotées, 2 joueurs : Chaque joueur dispose de 3 pions. Chacun, à tour de rôle, dépose un pion sur une case libre. Le but est de totaliser 10 avec ses trois pions. Si aucun joueur na totalisé 10 quand les 6 pions sont posés, chaque joueur à tour de rôle, peut déplacer lun de ses pions vers une case libre. Un jeu de cartes (sans les figures), 4 joueurs, un « tapis » comportant 4 cases Le jeu est distribué entre les 4 joueurs. Chacun a tour de rôle pose une carte sur une case. Le but du jeu est de faire 20 avec les 4 cartes visibles. Si la somme nest pas 20, le joueur suivant doit poser une carte sur lune des cartes visibles … Celui qui obtient 20 ramasse les cartes visibles et conserve ce pli. Le gagnant est celui qui a le plus de cartes

24 Bibliographie : BO, bien sûr ! Les documents daccompagnement en math. Comptes pour petits et grands, tomes 1 & 2, Stella Baruk, Ed Magnard. Si 7 = 0, Stella Baruk, Ed Odile Jacob. Ermel CP et CE1, Ed Hatier Activités numériques et résolution de problèmes au cycle 2, Bruno Bonhème et Alain Descaves, Ed Hachette Le calcul mental au quotidien, François Boule, Scéren CRDP de Bourgogne. Fort en calcul mental !, Christophe Bolsius, Scéren CRDP Lorraine. Calcul mental au cycle 2 : des activités pour un entraînement quotidien, ML Peltier, Ed Hatier

25 En conclusion… On apprend toujours au moyen de ce que lon sait déjà ; lacquisition de connaissances nouvelles ne peut seffectuer que sur la base de connaissances anciennes (François Léonard)… …doù limportance de la continuité des apprentissages. En mathématiques, comme ailleurs, on ne part jamais de zéro ! Et maintenant, on peut partir… …à la maison !


Télécharger ppt "Animation pédagogique Arras 1 Mercredi 2 décembre 2009."

Présentations similaires


Annonces Google