La présentation est en train de télécharger. S'il vous plaît, attendez

La présentation est en train de télécharger. S'il vous plaît, attendez

La soustraction La mission MATHS 94 vous propose un module sur : Alors ? How many ? 8-9 = ? 9-8 ? Je retiens 1 Un quoi ? 279 c’est 280-1 280 pour aller.

Présentations similaires


Présentation au sujet: "La soustraction La mission MATHS 94 vous propose un module sur : Alors ? How many ? 8-9 = ? 9-8 ? Je retiens 1 Un quoi ? 279 c’est 280-1 280 pour aller."— Transcription de la présentation:

1 La soustraction La mission MATHS 94 vous propose un module sur : Alors ? How many ? 8-9 = ? 9-8 ? Je retiens 1 Un quoi ? 279 c’est pour aller à 360 ? 20 et 60 moins 2 et …… hel p

2 Retour sur les programmes : progressions 2008 Concernant explicitement la soustraction : Compétences en lien avec la soustraction : CP Connaître et utiliser les techniques opératoires de l’addition et commencer à utiliser celles de la soustraction (sur des nombres inférieurs à 100) -calculer en ligne des différences, des opérations à trous ; -résoudre des problèmes simples à 1 opération CE1 Connaître et utiliser les techniques opératoires de l’addition et de la soustraction (sur des nombres inférieurs à 1000) -connaître et utiliser des procédures de calcul mental pour calculer des différences ; -calculer en ligne des suites d’opérations -résoudre des problèmes relevant de l’addition, la soustraction, la multiplication CE2 Effectuer un calcul posé : addition et soustraction et multiplication -calculer mentalement des différences ; -résoudre des problèmes relevant des 4 opérations CM1 Effectuer un calcul posé : addition et soustraction de deux nombres décimaux -estimer mentalement un ordre de grandeur du résultat ; -division euclidienne de deux entiers et division décimale de deux entiers… CM2 Effectuer un calcul posé : addition, soustraction, multiplication de deux nombres entiers ou décimaux. -consolider les connaissances et capacités en calcul mental sur les nombres entiers et décimaux ; -division d’un décimal par un entier…

3 Quels obstacles ? Le fonctionnement de l’écriture des nombres : le principe de la numération décimale de position veut que chaque chiffre qui constitue l’écriture d’un nombre ait une valeur différente en fonction du rang qu’il occupe. Cette évidence ne va pas de soi. Mal compris, cela devient un obstacle. Ce que l’on appelle « la retenue ». (dans les procédures que nous proposons, le mot usuel n’est pas employé : nous parlerons « d’échanges » en référence à la NDP ( numération décimale de position). Souvent, la retenue ne fait pas sens et elle est donc gérée de manière approximative et aléatoire. La maîtrise des petits répertoires additifs et soustractifs : pour certains enfants, l’effort se porte sur « 8-5 », péniblement trouvé avec l’usage tardif des doigts, quand d’autres récupèrent tout de suite le résultat dans un stock de résultats mémorisés et disponibles. En parallèle, sur des temps décrochés et réguliers, il faut travailler et entretenir la mémorisation des répertoires de petits nombres. La multiplicité des « termes » techniques utilisés : « je retire de » ; « j’enlève à » ; « j’ôte» ; « je soustrais » ; « moins » …. en fonction des adultes qui guident l’apprentissage, ajoute de la confusion chez certains élèves.

4 Quels conseils ? Articuler en permanence au cours des 5 années, calcul posé et calcul mental (automatisé, pour les résultats des tables et réfléchi, pour développer des procédures). Faire vivre l’apprentissage à travers ses usages : en résolution de problème, dans le domaine des grandeurs et mesures (par exemple, avec les périmètres) Privilégier la méthode qui vise à « casser la dizaine » pour la transformer en 10 unités. (la technique dite de « l’écart constant », quoique « sociale », est écartée); Argumentaire de la mission MATHS 94 :  cette « technique » est plus facile à comprendre et le sens aide à la mémorisation de procédures et à leur automatisation progressive ;  elle offre l’avantage de renforcer le domaine de la numération décimale de position et de mieux en comprendre son fonctionnement (notion d’échange : 10 contre 1) ;  elle facilitera l’apprentissage du calcul des durées : 1 heure contre 60 minutes..  elle permet l’utilisation de matériel didactique (bouliers, abaques, matériel multibase) et garantit ainsi la manipulation, nécessaire aux apprentissages et tant concurrencée, dès les petites classes, par l’usage du fichier et de présentations formelles et abstraites.

5 Items évalués et niveau de maîtrise CM Item 82 : exercice 13 56,73 – 7,02 environ ¼ des élèves ne réussit pas en janvier Le fait d’avoir une partie décimale au centième dans les deux nombres ne permet pas de voir si l’élève a bien identifié l’unité pour poser l’opération ou s’il a procédé par « habitude » en posant les chiffres les uns sous les autres de la droite vers la gauche. On pourrait essayer 55,43 – 5,4. Un élève peut très bien avoir fait illusion en traitant séparément la partie décimale et la partie entière comme deux nombres entiers juxtaposés (56-7) puis (73-02). On pourrait perturber davantage la situation en proposant 56,74 – 4,91 ou 56,7 – 5,91 Il ne s’agit pas de mettre l’élève en difficulté mais de creuser pour distinguer la procédure « mécanique » de la bonne compréhension du système décimal. Certaines réponses justes occultent, elles aussi,des incompréhensions ou des représentations erronées bien installées. (Le calcul offre l’avantage de consolider la numération : c’est fondamental à l’école primaire)

6 Items évalués et niveau de maîtrise CM suite Item 95 : exercice 19 La virgule n’est pas le cœur du problème… …… = 500 Environ la moitié des élèves ne trouve pas… Le calcul est écrit pour soulager la mémoire de travail. 500 est un nombre « rond ». L’ordre de présentation invite à mobiliser une stratégie de simple bon sens : compléter par 4 unités (retenir 250) ; compléter par 3 dizaines (retenir 280) ; Difficulté : garder en mémoire 280 jusqu’au bout ( s’il est oublié, il faut tout recommencer) Poursuivre en cherchant le complément jusqu’à 300 et de 300 à 500. Il n’y a pas de problème de « retenue ». Nombre d’élèves ne semblent pas voir la quantité en lisant directement un nombre. L’habitude de manipuler du matériel multibase permet de voir mentalement 4 barres de 10 dans 845 ; dans 1043 dans 48 ; dans 547,56

7 Items évalués et niveau de maîtrise CE Item 76 : exercice – 254 = Environ ¼ des élèves ne réussit pas en mai Des élèves peuvent avoir eu « juste » en procédant de manière plus ou moins mécanique, colonne par colonne. Le nombre égal de chiffres aux deux termes de la soustraction limite les risques d’erreur de position. Le calcul ne garantit pas la compréhension du fonctionnement de la numération de position. Sans doute que le répertoire des tables de soustraction de petits nombres n’est pas suffisamment mémorisé et automatisé pour offrir disponibilité et rapidité à l’élève. Au demeurant, l’usage des doigts était possible (je lève 6 doigts, j’en replie 4 et il en reste 2 levés) difficulté : ne pas confondre avec les autres doigts ; adopter un sens de lecture. Item 77 : exercice – 126 = Environ la moitié des élèves ne trouve pas… L’écriture posée ne peut poser problème puisqu’il y a autant de chiffres aux deux termes de la soustraction (cf item 76) Le problème de la « retenue » ne se pose qu’une fois et au début. Les nombres choisis sont réguliers sur le plan de leur lecture : quatre cents ; vingt-six (différent de quinze ou soixante-treize) Or, dès le CP les élèves abordent la technique opératoire de la soustraction … Le principe des échanges 10 contre 1 est-il compris ?

8 Étape de familiarisation avec le matériel : CP et aussi CE1 Constituer 57 sur la table Avec le matériel, la position n’a pas d’importance. Rédaction du bon de commande Nombre de barres de 10 Nombre de cubes simples 57 Mettons un peu d’ordre Usage du matériel multibase Avec les remerciements à Aurélie, IMF à l’école Decroly

9 On transforme tout en barres de 10 Constituer 245 sur la table Usage du matériel multibase Étape de familiarisation avec le matériel : CP et aussi CE1 Rédaction du bon de commande Nombre de barres de 10 Nombre de cubes simples Nombre de plaques 542 Il faut bien s’assurer de la conversion d’1 plaque en 10 barres 24

10 Rédaction du bon de commande Constituer 505 sur la table Usage du matériel multibase Étape de familiarisation avec le matériel : CP et aussi CE1 Risque de confusion ou Avec le « o » au milieu : absence de quoi ? Nombre de cubes simples Nombre de barres de 10 Nombre de plaques Cinq cents, c’est 5 centaines, c’est 5 plaques Euréka ! It’s easy

11 Usage du matériel multibase Étape de résolution simple (sans retenue) CE1 365 moins 142 J’ai 365 Je retire 142 Nombre de cubes simples Nombre de barres de 10 Nombre de plaques 563 En rouge, la table de travail sur laquelle je pose ce que je retire ou transforme Il reste 223 Nombre de plaques Nombre de barres de 10 Nombre de cubes simples 365 Résultat : cubes en moins 4 barres en moins 1 plaque en moins 322 Good !

12 243 moins 174 Usage du matériel multibase Étape de résolution plus complexe (avec retenue) CE1 J’ai 243 Nombre de cubes simples Nombre de barres de 10 Nombre de plaques 42 Je retire 174 Je rencontre un problème Comment enlever 4 cubes ?!!! En rouge, la table de travail sur laquelle je pose ce que je retire ou transforme Je prends une barre de 10 et je l’échange contre 10 cubes cubes-1 barre 13 cubes 3 barres 2 plaques Je peux retirer 4 cubes moins 4 9 cubes

13 243 moins 174 J’ai 243 Nombre de cubes simples Nombre de barres de 10 Nombre de plaques 9 cubes 3 barres 2 plaques Je rencontre un autre problème Comment enlever 7 barres ? Je prends 1 plaque et je l’échange contre 10 barres En rouge, la table de travail sur laquelle je pose ce que je retire ou transforme +10 barres- 1 plaque 1319 Je peux retirer 7 barres moins 7 barres 6 Résultat : 169 You are the best !

14 Prolongement de l’usage du matériel : conseils Eviter de cesser l’utilisation du matériel afin qu’il reste familier à l’élève sur l’ensemble de sa scolarité en école élémentaire. Il s’en servira : -en CE2 avec les cubes de 1000, -en CM1 pour revoir les bases et gérer les soustractions de grands nombres de et plus, de temps en temps (cf dessin du matériel multibase fiche annexe) -en CM1 et en CM2 pour les nombres décimaux En complément, utiliser les abaques et les bouliers (de 10 contre 1) : la notion se construit ainsi indépendamment du matériel utilisé. Développer une dextérité. Si un élève est fragile et privilégie un type de matériel, renforcer cet usage sans le Perdre avec une multiplicité de matériels. En complément, sur des temps décrochés, très courts et réguliers, développer la mémorisation du répertoire soustractif. Tenir, par exemple, une feuille de route (de scores) sur le CP-CE1 et l’entretenir régulièrement sur les cycles suivants. En complément, proposer des situations variées nécessitant l’usage de la soustraction En grandeurs et mesures : situation sur la longueur d’un terrain rectangulaire, même Avant l’enseignement des périmètres… ; montant d’une réduction entre deux prix en euros… En gestion des données …

15 Comment passer à l’abstraction ? Au cahier ? Avec les remerciements à Aurélie, IMF De la méthode Toujours la même On dessine (2 couleurs)

16 Comment passer à l’abstraction ? Au cahier ? consigne Technique avec les chiffresRésultat annoncé clairement Vérification avec addition

17 Comment passer à l’abstraction ? Au cahier ? consigne Technique habituelle ENTRAINEMENT Annonce du résultat Vérification avec addition Automatisation de la méthode pour se concentrer sur le calcul

18 Et la gestion des zéros ? La propreté des calculs ? Je barre, j’échange et je retire : technique maîtrisée La compréhension de la NDP aide à franchir l’obstacle Vérification par l’addition et validation par le maître

19 Toujours plus vite et plus efficace… avec la pratique Si tu en réussis 5 sans te tromper, je te dirai que tu sais soustraire. Il est très important et motivant pour l’élève de l’associer explicitement aux critères de réussite et d’évaluation des compétences. Emulation et enjeu Lisibilité sur les apprentissages Autre rapport à l’école …. Compétence validée ? Yes of course !!

20 En espérant que cet outil puisse vous offrir quelques pistes concrètes…. Le matériel multibase (+ bouliers, abaques, monnaie, cartons Montessori….) est disponible dans chaque circonscription. Les équipes de circonscription pourront relayer cette présentation. Pour les grands nombres et les décimaux, le principe reste identique et il est familier des élèves s’il a été abordé en C2. The end


Télécharger ppt "La soustraction La mission MATHS 94 vous propose un module sur : Alors ? How many ? 8-9 = ? 9-8 ? Je retiens 1 Un quoi ? 279 c’est 280-1 280 pour aller."

Présentations similaires


Annonces Google