La présentation est en train de télécharger. S'il vous plaît, attendez

La présentation est en train de télécharger. S'il vous plaît, attendez

Module 3 Equipement de serveurs

Présentations similaires


Présentation au sujet: "Module 3 Equipement de serveurs"— Transcription de la présentation:

1 Module 3 Equipement de serveurs
Version 1.0 21 September 2011

2 Présentation des technologies de serveur classiques

3 Consommation d‘énergie des serveurs dans les datacentres et potentiel d‘économies
Les serveurs représentent environ 30-40% de la consommation d’énergie totale des datacentres ; Les mesures entreprises au niveau des équipements, par exemple la gestion d’alimentation, peuvent améliorer l’efficacité énergétique de 15-30% ; Les mesures entreprises au niveau des logiciels impliquant la virtualisation permettent des économies dépassant 90% dans des zones où elle se prête à une application efficace ; Les effets positifs sont doublés au niveau de l’alimentation et du refroidissement.

4 Types de serveurs dans un datacentre
Server types used in data centres are typically of the four general form factors tower, rack, blade and mainframe. Mainframe servers are especially designed for high resilience and throughput and use proprietary operating systems, most of which are based on Unix and a growing number on Linux employed. Servers are often used for applications including bulk data processing, process control, industry and consumer statistics, enterprise resource planning, and financial transaction processing. Most common server types in data centres are rack and blade form factors. Thus further considerations are focussing on these server types. Tour Rack Lame Mainframe

5 Serveurs rack et serveurs tour
Rack servers based on x86 platform are still dominant in all types of DC business and will maintain high market relevance in the future. Rack servers are designed for arrangement in standardized 19-inch mounting rack or cabinets. The servers have expansion slots known as mezzanine slots, for adding network interface cards (NICs) or Fibre Channel host bus adapter (HBA) cards. Compared to tower servers rack servers allow efficient use of floor space, offer centralized cabling and server management and increase scalability increase infrastructure scalability. Rack server models are available from 1U[1] to 8U (and larger) form factors. [1] rack unit or U: unit of measure used to describe the height of equipment intended for mounting in a 19-inch rack, 1 U is 1.75 inches (44.45 mm) high. Performance of rack servers covers a wide spectrum – starting from entry level to the mid-range level. The current product range from entry level servers to mid-range servers typically provide 1- 8 CPUs with two to six cores operating at speeds of up to 3 GHz and above Tower servers are upright free-standing units containing all basic server components and commonly equipped with direct attached storage (DAS). This server type generally requires more floor space than blades or rack-mounted servers and offers less scalability thus representing entry level server products. Tower servers based on x86 platform represent the entry level category for enterprise server products. On the very low end this server type is offered as desktop derived server equipped with components commonly used in PCs(e.g. CPU, hard disks, and power supplies) This type of servers is mainly used in small offices. ENERGY STAR defines this server type as “small scale server”. Small-Scale Servers are designed to perform functions such as network infrastructure services (e.g., archiving) and data/media hosting. The products are not designed to process information for other systems or run web services as a primary function. Energy Star specifies energy efficiency criteria for small scale servers including power consumption in idle and off mode as well as power supply efficiency.

6 Châssis et serveurs lame type
Blade servers consist of a blade chassis also called enclosure and server blades mounted into the chassis. Blade servers allow to arrange high computing densities with reduced requirements regarding space and time for management. The blade chassis or enclosure provides a number of hardware components which are shared by the individual blade servers: power supply modules, media slots, USB connections, hot-swap blower modules, I/O modules (e.g. Fibre channel, Ethernet) management module bays, standard fabric switch module bays, four high-speed fabric switch module bays Blade chassis typically support 7, 14, 16 or more blades. Blade systems include one or more management modules for the management of the chassis as well as KVM interfaces (keyboard, video and mouse). Server blades include the CPU, RAM and interfaces to storage and network resources. The server blade connects to the shared resources, power, I/O, networking and storage through a backplane or mid-plane in the chassis. Thus adding and maintaining server hardware is facilitated compared to standard rack servers. Blades are hot swappable, allowing live upgrades. Typically the motherboard hosts either one or two CPUs. I/O blades provide specialized I/O and networking respectively switching and routing capabilities for blade systems. With the increased computing densities now made possible with blade server technology, it has become beneficial to use 10Gb Ethernet as a interconnect technology in the backbone of the data centre. Many I/O and network functions can be supported by plug-in I/O modules fitting into the I/O module slots. However fast Ethernet switch modules may require that blades have 10Gb Ethernet ports.. Châssis et serveurs lame type

7 Serveurs double et multi-nœuds
Dual-node and multi-node servers are partly based on a similar philosophy as blade servers. The multi-node concept combines several server units (commonly 2-4) in one rack-mounted chassis. The servers share power-supplies and fans however compared to blades they are not modular and not flexible regarding configuration. Thus multi-node serves are an approach to implement moderately higher computing density at comparably low cost. This type of hardware is often designed for purposes of small and medium enterprises. However there are also high performance dual-node concepts available for example for blade systems where two servers are combined in one server blade (Sun Blade X6275 M2). The figure shows a standard dual node server with the shared power supply, fans, CPU, I/O interfaces and a high-end dual-node blade designed for maximum performance in virtualised blade systems. Serveur double-nœuds type Lame double-nœuds (SUN)

8 Notions générales d’efficacité énergétique des serveurs

9 Types de datacentres Source: [Hint 2010]
According to US and German studies data centres can be categorized in terms of number of servers, power demand and floor area. The typical abundance of the different server types in the data centre categories is shown in the table. The table shows that server closets and server rooms up to 20m2 floor area are the major types of IT facilities making up more than 95% of the total number of facilities. Small data centres (<150m2) are already less than 5% and Medium to large data centres less than 1%. However as shown in the next slide large data centres may host thousands of servers whereas closets and server rooms host only a few Source: [Hint 2010]

10 Proportion des types des serveurs dans les datacentres
Concluding from the table rack servers represent the most common server form factor (almost 50%), followed by blade servers (approx. 18%), mainframes/UNIX (approx 17%) and tower servers (approx 15%). Tower servers are most common in server closets while rack servers are abundant in all types of data centres. Blade servers are most common in small data centres whereas mainframes mainly appear in medium to large DCs Source: [Hint 2010]

11 Options de gestion d’alimentation du niveau composant au niveau système
Power management technologies can be implemented at many different levels. Some power management features are embedded in and pertain to the operation of individual components. Other features operate at the server unit level, managing multiple components simultaneously. Still others operate at the rack or data centre level, managing sets of servers or even entire server populations. Power management policies are passed from each hierarchical level to the next so each level can manage itself in real time. For example a data center load-balancing power management control (data centre, multi-rack level) would not micromanage the components of each server (component level) but execute policy decisions for the server units allowing them to intelligently manage its internal components. The existence of lower-level controls is important for the higher-level policy controls to be effective. For components and systems typical performance states supporting power management are defined by the Advanced Configuration and Power Interface (ACPI). The specification provides some of the key terms that allow system designers to implement power saving features. Some machine state standards are not covered in ACPI due to new developments. Examples for the evolution of such new power management standards respectively definitions of operational states are the Active State Power Management definitions high-speed links (L-state) and the Core C-states describing core states in a multi-core CPU. The new system and component controls provide a finer grained resolution for higher-level policy engines to adjust power and performance based on actual demand.

12 Options de gestion d’alimentation du niveau composant au niveau système

13 Consommation d’énergie et efficacité des processeurs AMD et Intel
Gamme de puissance AMD Intel® Xeon® processor numbers prefix (e.g. _5482) Haute performance (mais grand consommateur d’énergie) SE X Performance Standard Standard Power E Mainstream Efficace énergétiquement HE L-PowerOptimized Très efficace énergétiquement EE AMD Opteron 61xx processor [OPT11] Nombre de cœurs Cadence [GHz] ACP [Watt] 6132 HE 8 2.2 65 6140 2.6 80 6166 HE 12 1.8 6176 2.3 6180 SE 2.5 105 Datasheets normally contain the thermal design power (TDP), which is the maximum power the cooling system in a server is required to dissipate. Both Intel and Advanced Micro Devices (AMD) have defined TDP however Intel’s and AMD’s interpretation (especially relevant for CPU comparison based on data sheets) differ to some extent. According to Intel the upper point of the Thermal Design Power (TDP) should be used for processor thermal design targets and is not the maximum power that the processor can dissipate. According to AMDs definition the thermal design power is the maximum power a processor can draw for a thermally significant period while running commercially useful software. The constraining conditions for TDP are specified in the notes in the power tables.” Recently AMD has introduced an additional power value called ACP (Average CPU Power) defined as the average (geometric mean) power a processor dissipates while running a collection of 5 different benchmarks (Transaction Processing Performance Council (TPC Benchmark*-C), SPECcpu*2006, SPECjbb*2005, and STREAM.) Commonly server CPUs are classified according to three or four TDP classes – so called power bands. AMD and Intel are using different terminology. The tables show the categorization of CPU power bands and examples of AMD processor series

14 TDP (Thermal design power) et puissance moyenne de processeurs AMD
Socket F[1] AMD Opteron 6100 AMD Opteron Puissance ACP [Watt] TDP [Watt] EE 40 60 - 32 35 HE 55 79 65 85 50 Standard Power 75 115 80 95 SE 105 137 140 ACP TDP CPU Series 105 W 140 W 6100 (G34) 80 W 115 W 65 W 85 W 75 W 95 W 4100 (C32) 50 W 32 W 35 W The tables show the typical power (both ACP and TDP) for different power bands and specific AMD CPUs (high performance versus low power optimised)

15 Amélioration d‘efficacité énergétique selon les types et générations des processeurs
G5 (2.66 GHz, Xeon L5430) G6 (2.40 GHz, Xeon L5530) G7 (2.26 GHz,Xeon L5640) Recent developments regarding energy efficiency of CPUs in rack servers at different load levels can be illustrated by the example of the server family DL380 from Hewlett-Packard. HPs ProLiant DL 380 server family represents volume rack servers with riche expansion options to support virtualization, and database applications in a 2U form factor. The model family is marketed as versatile, general-purpose 1- 2 processor rack mount servers best suitable for enterprise data centres and sophisticated SMB environments deploying and database applications, front-end network applications. Data from SPECpower benchmarking (SPECpower_ssj2008 is a CPU centric power performance benchmark) is available for the server generations G5-G7. The most recent generation G7 has been benchmarked for two different CPU types based on Intel Xeon X-series (Performance) as well as L-series (Power optimized). The benchmarking profile for each of this servers is shown, including a performance chart (red columns) and the active power draw (blue line) for load points from 10% to 100 %. The power draw for active idle is plotted additionally. According to the data the ratio of Idle power to 100% load power has been reduced tremendously from G 5 to G 7 models. For the DL 380 G 5 server idle power (no load) was 33 % (170 watts) lower than 100% power (253 watts). In the case of G7 idle power is only one quarter of maximum power. Thus new server technology has become much more energy efficient at low load levels due to intelligent power management at CPU level.

16 Amélioration d‘efficacité énergétique selon les types et générations des processeurs
G7 (2.26 GHz,Xeon L5640) G7 (3.07 GHz, Intel Xeon X5675) The TDP for both G7 servers is declared with 95 resp. 60 watts. This difference in CPU’s power consumption can be related to the difference in peak power (at 100 % target load) of 222 vs. 172 watts. However for both server models average energy efficiency across workloads (3.197 vs overall ssj_ops/watt) is quite comparable (Xeon X5675, 3.07 GHz and Xeon L5640, 2.26 GHz) and active idle power (52,3 resp. 53,6 watts) is quite similar as well. Hence evaluating CPUs energy efficiency based on TDP is not recommended.

17 Technologie Turbo Boost développée par Intel
Intel’s “Turbo Boost Technology” temporarily increases CPU performance by increasing frequency of one or more cores. The Turbo Boost Technology was originally introduced in the Intel Core CPU family (mainly for desktop systems and notebooks) based on Nehalem processor architecture but is now available in recent XEON server processors as well. Turbo Boost is engaged by default and activated when the Operating System (OS) requests the highest processor performance state (P0). The processor may operate in Turbo Boost mode as long as it stays within its thermal (TDP and maximum temperature) limits. Frequency is increased in steps. The maximum frequency is dependent on the number of active cores. The amount of time the processor stays in boost mode depends on the workload and operating environment. Turbo Boost technology is OS independent, what means that Advanced Configuration and Power Interface-aware (ACPI) operating systems require no changes to support Turbo Boost technology. This concept can contribute to higher energy efficiency especially if maximum performance is only required occasionally and for short time periods. In this case it is not necessary to choose high performance CPUs with high energy consumption as Turbo Boost provides enough headroom for occasional load peaks..

18 Stratégie d‘optimisation de la capacité d‘alimentation – power capping
Effet du power capping Active setting respectively allocation of power budgets to servers is known as power capping. IT managers can specify power caps for servers according to real requirements. Dynamic power capping allows to reduce power capacity and effective power of the system. Power capping reduces the CPU-p-state to a less power consuming level. CPU-p-states are defined processor performance states which can be different depending on processor type. The p-states correspond with a specific core frequency (e.g. 2,0/2,33/2,66GHz for different p-levels). Lower power states than the ones defined by p-states can be accessed by clock speed throttling via the BIOS. However management by p-states is normally the more efficient way respectively leads to a lower loss of performance. The processor frequency reduction is continued automatically until the peak-power is below the user defined cap. Dynamic power capping executed via a management controller is much faster and allows very short monitoring cycles compared to power capping via BIOS (several readings per second). Power capping allows to optimize power provisioning beyond the level typically supported by online power configurators (provided by manufacturers). The use of online power configurators already allows a much better estimation of required cooling and power capacity compared to using nameplate rated power data. However dynamic power caps allow to further optimize sizing of power supply and cooling capacity thereby offering additional energy and cost savings. The figure provides a schematic illustration of power usage over time when using power capping alternatively respectively in addition to power demand calculation or simple consideration of nameplate power. It is important to emphasise that power capping does not improve the energy efficiency of single server units (e.g. in terms of operations per watt) but helps to optimize power allocation between servers and to increase overall efficiency of power usage by eliminating power peaks demanding high power capacity. Réduction de la demande d‘énergie maximale grâce au power capping (étude de cas HP)

19 Energy Star: exigences d’efficacité pour l‘alimentation des serveurs
Type d’alimentation Puissance de sortie nominale Charge 10% Charge 20% Charge 50% Charge 100% Multi-sortie (CA-CC & CC-CC) Tout niveau de sortie N/A 82% 85% Sortie unique (CA-CC & CC-CC) ≤ 500 watts 70% 89% > 500 – watts 75% > watts 80% 88% 92% Efficiency of power supplies being stepchild for long time has been strongly improved in the last years. The Energy Star program for servers has set requirements for power supply efficiency defining efficiency levels for 10%, 20%, half load and full load for multi-output and single-output power supplies. For the latter the requirements are specified for different levels of rated power.

20 Energy Star: exigences au niveau du facteur de puissance pour l‘alimentation des serveurs
Type d’alimentation Puissance de sortie nominale Charge 10% Charge 20% Charge 50% Charge 100% Multi-sortie (CA-CC & CC-CC) Tout niveau de sortie N/A Sortie unique (CA-CC & CC-CC) ≤ 500 watts 0,80 0,90 0,95 > 500 – watts 0,65 > watts

21 Exigences d‘efficacité énergétique et de facteur de puissance dans le programme 80plus
% de la charge nominale 20% 50% 100% 80 PLUS Bronze 81% 85% 80 PLUS Silver 89% 80 PLUS Gold 88% 92% 80 PLUS Platinum 90% 94% 91% Facteur de puissance 80 PLUS Bronze 0,9 (100 % charge) 80 PLUS Silver 0,9 (50 % charge) 80 PLUS Gold 80 PLUS Platinum 0,99 (100 % charge) The 80 Plus Certification Scheme for power supplies also provides efficiency requirements however excluding the 10% load level. 80PLUS Gold and Silver requirements are more demanding than Energy Star levels. The higher efficiency categories of 80PLUS are more demanding than the Energy Star requirements.

22 Point de fontionnement type de l‘alimentation selon l‘étude d‘Energy Star
Many standard rack servers operated at relatively low load levels are equipped with redundant power supplies of far too high rated power. It is evident that such configurations cause high energy losses due to an unfavourable operating point of the power supply. Energy Star has published detailed data on idle power, maximum power and rated power both for minimum and maximum configurations of various server families. Averaging idle and maximum power for the lowest and highest configuration possible provide a proxy for a realistic power consumption. Relating this proxy for on-average power to the rated power for a configuration with only one power supply provides rather disappointing results. The vast majority of servers is operated with highly over provisioned power supplies. Given the fact that many servers are equipped with redundant power supplies the realistic power supply’ load indicated in teh figure above even has to be divided by the factor of two. Manufacturers like HP (e.g. in their ProLiant G6 and G7 server series) provide a special power supply operation mode to overcome this problem. This ROM-based setup provides the user with a ”High Efficiency” mode and a ”Balanced” mode”. In Balanced mode both power supplies provide power equally while in the “High Efficiency mode” the system only uses one power supply until the system load exceeds a certain threshold. The second power supply stays online maintaining redundancy. Both modes provide full power redundancy in case of a power supply or circuit failure.

23 Utilisation des équipements selon les différents types d’application
Serveur Processeur Mémoire RAM Disques durs E/S Partage des fichiers/ d’imprimantes o + ++ Messagerie Virtualisation +++ Web Bases des données Applications Terminal Appropriate configuration of severs is a key issue for achieving adequate performance at optimum energy efficiency. To low hardware configuration may cause performance problems while over provisioned systems will cause unnecessary high power consumption. Thus defining performance requirements based on the type and intensity of workloads is crucial. The table provides a rough indication on hardware component performance requirements of different types of applications. Another aspect relevant for adequate hardware configuration is expandability. Excessive expandability often is also a source of inefficiency. Many servers allow extensive upgrading of storage, memory or CPUs that however is not commonly used in practice. Hardware allowing extensive but unused upgrading is less efficient and should be avoided.

24 Gestion d‘alimentation en fonction des profils de puissance
Fonction “économie d’énergie” Performance maximale Equilibre puissance-performance Consommation d’énergie minimum Régulateur de puissance Static High Dynamic Static low Manage QPI[1] power Off On Memory Interleave Full interleave Disabled PCIe 2.0 Enabled Vitesse de mémoire Auto 800 MHz Puissance minimale du processeur en mode inactif No C-states C6 The concept of power profiles at server level can be explained by the example of a feature currently available for HP ProLiant 300-series G6 and G7. The HP Power Profile defines three possible configurations for power features providing a simple mechanism for users to configure power management options based on tolerance to power versus performance. There are three possible settings for this profile concept: Maximum Performance; Balanced Power and Performance Minimum Power Usage. The power management addresses CPU, memory and interfaces. The pre-sets for the three categories are listed in the table.

25 Modes d‘économie d‘énergie au niveau du système d‘exploitation (e. g
Modes d‘économie d‘énergie au niveau du système d‘exploitation (e.g. Windows Server 2008) Power management on OS level can be illustrated based on the example of Windows Server This OS version provides settings for power saving strategies in different power management modes: “Balanced mode” – optimizes out of the box power efficiency “High performance mode” appropriate for servers running at very high utilisation and need to provide maximum performance, regardless of power costs “Power saver mode” can be used for servers operated at low loads having more performance capability than really needed. Enabling of the power save mode in Windows 2008 leads ot high savings of more than 15% especially in medium load situations (see Figures and Figures)

26 Evaluation des options de consolidation avec des supports logiciels (e
Evaluation des options de consolidation avec des supports logiciels (e.g. Capacity Advisor) Profils de différentes charges analysés à la consolidation In the following a practical example for evaluation of CPU utilization for different servers is provided. Accomplishing workload analysis in Capacity Advisor CPU or memory utilization over time can be viewed. The Figure shows a graph of CPU utilization for a single system over a one-month period. The peak value is marked with (1). A comparison of the two graphs shows that workload peaks on the two systems do not occur simultaneously and do not require the same percentage of the allocated CPU cores. This suggests an opportunity to consolidate both systems. Originally a total of 4 cores are used (2 per system) From the graph it is evident that the peak of the combined workloads is less than the capacity of 2 CPU cores. Even with utilization limits in place this system is unlikely that 4 CPU cores are required to meet the workload demand.

27 Evaluation des options de consolidation avec des supports logiciels (e
Evaluation des options de consolidation avec des supports logiciels (e.g. Capacity Advisor) Profil des charges combinées The Figure. shows the result of using a Capacity Advisor “what-if” scenario to combine the workloads on to one system.

28 Fonctions des outils de planification de la capacité: e. g
Fonctions des outils de planification de la capacité: e.g. HP capacity advisor Recueil des données sur les cœurs des processeurs, la mémoire, le réseau, l’E/S disque, et l’utilisation de l’énergie Visualisation de l’utilisation historique des ressources de l’ensemble de système d’exploitation et suivi des workloads (pour les systèmes HP-UX et Open VMS); visualisation de l‘utilisation des ressources de l’ensemble de système d’exploitation (pour Microsoft Windows et Linux) Visualisation de l’utilisation historique des ressources par workload et l’utilisation globale sur le partitioning continuum. Génération de rapports d’utilisation des ressources Planification des modifications de workload ou du système, et évaluation des impacts sur l’utilisation des ressources Evaluation des impacts de l’utilisation des ressources pour les modifications proposées Evaluation des tendances pour des prévisions de la demande en ressources The HP Insight Capacity Advisor allows monitoring and evaluation of system and workload utilization including CPU cores, memory, network and disk I/O, and power. This information supports data center operators in increasing energy efficiency by optimizing workload levels on available hardware resources. One or more systems that are connected in a cluster configuration or to a network can be evaluated and monitored. The Capacity Advisor helps to evaluate system consolidations, load balancing, changing system attributes and thus supports decisions how to arrange workloads to improve utilization. The analysis provided can support the planner in estimating future system workloads and in planning system configurations. All the features can also be used to evaluate options to increase energy efficiency. Among others the indicated tasks can be performed. Capacity Advisor can use data collected over time to show the results of configuration changes. Effects of the changes over time and percentage degree of system use is shown. allowing a comparison of resource utilization and quality of service before and after a change. Overall the use of capacity planners provide a strong advantage for system design and planning compared to largely unsupported decisions. The tools provide a quantitative basis for examining the usage of current resources and the capability to do simulations (what-if scenarios) for moving workloads or resources before changes are implemented.

29 Fonctions des outils de la gestion de la consommation d‘énergie: e. g
Fonctions des outils de la gestion de la consommation d‘énergie: e.g. Active Energy Manager IBM Suivi et enregistrement des données sur la consommation d’énergie Gestion d’alimentation (power management), notamment Configuration des options d’économie d’énergie Configuration des power caps Automatisation des tâches liées à l’alimentation Configuration des instruments de mesure tels que PDU et capteurs Visualisation des événements Calcul des coûts d’énergie et estimations des économies d’énergie Réglage des seuils Développement et mise en place de stratégies énergétiques Suivi des équipements d’alimentation et refroidissement liés aux matériels informatiques This tool is a plug-in to IBM Systems Director [IBMAEM] designed for monitoring and management of power and cooling of IBM rack and blade server systems. IBM states that non-IBM systems can also be monitored using adequate metering products, such as power distribution units (PDU), sensors and integration with facility software. Tasks which can be accomplished using Active Energy Manager resources include: see Figure The configuration of metering devices (PDUs and sensor devices, to associate them with other resources) and cooling devices allows to view all resources cooled by a cooling device and all cooling devices which cool a resource. The feature facilitates supportive measures for cooled resources. Power cap value for IBM servers and IBM BladeCenter systems can be set ensuring that system power consumption stays at or below the value defined by the setting. A system power policy can be defined (which is a power cap or power savings setting applicable for IBM Power systems and zEnterprise systems) for any number of individual systems or groups of systems. A group power capping policy specifies an overall power cap that the systems in the group collectively may not exceed. It can be applied to any number of groups. No additional settings are defined on the target resources and groups of resources. An event automation plan can be used to define power event criteria (filters) to trigger power-related event actions.

30 Options d’économies d’énergie pour les serveurs lame et serveurs multi-nœuds

31 Bénéfices des technologies lame et multi-nœuds
Principaux avantages des serveurs lame : Haute densité de calcul et faible encombrement ; Réduction du temps d’entretien et expansion du système en raison de la possibilité de connecter/déconnecter les modules à chaud (hot-plug) et les fonctionnalités de gestion intégrées; L’efficacité énergétique est plus élevée par rapport aux serveurs rack lorsque la gestion d’alimentation et du refroidissement est optimisée. Principaux avantages des serveurs multi-nœuds : Coûts et encombrement moins élevés que pour les serveurs rack standards ; Consommation d’énergie légèrement plus faible en raison de l’alimentation et des ventilateurs partagés.

32 Efficacité énergétique de l’alimentation des serveurs lame
Larger power supplies are often more efficient respectively can be designed for higher efficiency. Thus strategies to reduce the number of power supplies in IT systems respectively a consolidation to fewer larger power supplies as for example used in blade systems allow to increase energy efficiency. The figure shows a platinum labelled power supply of 2990 kW rated power for a blade chassis. As a procurement criterion for power supplies in blade chassis a 90% level between 20 and 100% load can be recommended. For new product generations of blade and multi-node servers some manufacturers provide so called common slot power supplies for different levels of rated power. Such power supplies allow right-sizing according to the power demand of a server. Such rightsizing is supported by online hardware configurators and power calculators offered by manufacturers as well as by power capping analysis. Efficacité de l’alimentation labélisée Platine (80plus, 2011) pour un châssis lame

33 Efficiency of platin level power supply for blade chassis
Comparaison de l’efficacité énergétique entre serveurs lame et rack For a rough comparison of the energy efficiency of blade and standard rack servers the case of a fully configured blade system compared with the same number of standard rack servers may be considered. Such a rough comparison may be done based on some energy efficiency data published by Dell. Dell has published SpecPower-data (SPECpower_ssj2008) for a blade system and comparable rack servers in SPECpower_ssj2008 is an energy efficiency benchmark for servers focussing on some hardware components like for example CPU-efficiency. It is therefore not a tool designed for holistic energy efficiency rating of servers. It is used here for a very rough comparison for the given purpose however explicitly stating that the results shall not be over interpreted. The SPECpower-values have been published for the Dell PowerEdge 610 servers both for the rack version (1U, R610) and the blade version (16 Blades, M610, PowerEdge M1000E enclosure). Both server types use the same CPUs with identical clock speed (Xeon 5670) and the same chip configuration (2 chips with 6 cores per server, 12 cores in total). The SPEC results shown in the figure indicate a maximum performance of 3885 ops/watt at 100% load for the blade system and 3739 ops/watt for the 1U rack system. This indicates that the performance per watt or the energy efficiency at maximum load is 4% better in the blade solution compared to the rack solution. The difference increases to about 8% for low loads (10%load) and to 11% for idle operation. Similar results had been indicated earlier for a blade system and a comparable rack server from HP in 2009, however were not officially published. Although due to the reasons given above the results must not be over interpreted they give rise to the conclusion that blade systems, even if fully configured and optimised for testing, show only slightly better energy efficiency compared to standard rack servers especially at high loads. The difference seems to increase at low load levels indicating a better overall power management in the blade system. Efficiency of platin level power supply for blade chassis Comparaison SPECpower_ssj2008 pour un serveur lame Dell M610 et un serveur rack R610 1U : (2 x Intel Xeon 5670, 2,93GHz), Juillet/Septembre 2010 par SPEC

34 Efficiency of platin level power supply for blade chassis
Définition de la capacité de puissance maximale en fonction du power capping Exemple d’optimisation de la puissance par power capping : Calculateur de puissance lame Dynamic power capping Puissance du châssis (16 lames) 6000 W 4790 W Coût d’énergie 100% 80% Définition d’un power cap avec „Insight control (HP)“ In blade chassis dynamic power capping can be used even more efficiently than for standard rack servers since the dynamic power cap can be specified across multiple servers within the chassis. Power caps will be dynamically adjusted by the onboard administrator and the service processor. Blades running lighter workloads will receive lower caps compared to blades with higher workload. Since workload intensity and dynamics will be different for the different blades power peaks will occur at different times and consequently the overall cap for the chassis can be set lower compared to the sum of individual caps for single blades. HP-blade chassis for example monitor, test and record power data including maximum, minimum and average actual power. They check the power supply specifications and execute the power capping settings. Peak power data is provided for each server during the power on self test. An onboard administrator actively manages the power caps based on a multi-tiered algorithm. HP has calculated power savings and reduced TCO for a blade centre where power supply design was based on power calculators compared to the situation when power capping was applied. The results are summarised in the table Maximum power and power provisioning cost was reduced by about 20% in the solution with power capping applied. Efficiency of platin level power supply for blade chassis

35 Démarche d‘optimisation de la capacité d‘alimentation
->Mettre en place un groupe de travail en collaboration avec les experts responsables des installations d‘alimentation et de refroidissement. ->Vérifier les options de gestion d‘alimentation et de power capping de vos équipements. ->Effectuer une optimisation grossière de la capacité d‘énergie/de refroidissement, basée sur les calculateurs de puissance fournis par les fabricants. ->Evaluer la demande réelle en énergie à l‘aide des outils de gestion disponibles pour un cycle d‘utilisation complet et définir les power caps en fonction des pics de charge. ->Ajuster les exigences de la demande d‘énergie pour le refroidissement au système bien réglé, basé sur les power caps. ->Mettre en place les mesures pertinentes pour la conception de l‘alimentation et du refroidissement. Continuer à surveiller l‘utilisation de l‘énergie et peaufiner les réglages. S2 S3 S4 S5 Typical steps for application of power management and power capping for IT hardware and infrastructure development and provisioning. Power capping in blade systems provide higher savings if workloads running on the various blades are different. In this case also power peaks are different and overall caps may be set significantly lower compared to individual blade server caps. In contrast to that for high performance computing respectively in cases where synchronised identical workloads are run in parallel savings may be relatively low. S6

36 Défis pour les systèmes lames à haute densité
Capacité de refroidissement suffisante et conception du refroidissement appropriée aux points chauds Distribution de puissance suffisante (capacité des PDU locales, câblage d’alimentation, etc.) Analyses à réaliser Capacité de puissance disponible – capacité et distribution locales, UPS Capacité de refroidissement disponible et distribution – capacité totale et distribution/utilisation pour les points chauds Demande en refroidissement du système lame

37 Conception d‘un système lame et refroidissement au niveau du datacentre
Different chassis density levels allow the following options for cooling of blade systems: Spreading the heat load of blade chassis to different racks: Individual blade chassis are mounted to different racks to spread heat load. For this concept the percentage of blade chassis in the total system has to be very low Dedicating cooling capacity: Excess cooling capacity is specifically dedicated to the blades. Also for this approach the percentage of blades in the system has to be relatively low as the existing cooling capacity is used to supply the blades. Installing supplemental cooling: Supplemental cooling is provided for the blade racks. Power density per rack can be up to 10kW. The approach allows good floor space utilization and high efficiency. Definition/design of high density area: Specific area in the data centre is dedicated to blades (high density row or zone). High efficiency and high floor space utilization. Density up to 25kW. Area has to be planned and redesigned Design of high density centre: High density blade racks throughout the data centre. Extreme rather uncommon approach that for most situations lead to very high costs and underutilization of infrastructure

38 Principaux avantages de la virtualisation des serveurs
Consolidation et confinement: accroit l’utilisation des serveurs de 5-15% à 60-80%. Optimisation des tests et du développement: provisionnement rapide de serveurs de tests et développement par la réutilisation de systèmes préconfigurés, favorisation de la collaboration développeurs Continuité de l’activité: Réduction des coûts et de la complexité de la continuité de l’activité (haute disponibilité et solutions de récupération après une panne) en encapsulant des systèmes entiers en fichiers simples qui peuvent être répliqués et restaurés sur quel serveur cible. Enterprise Desktop: Sécuriser les PCs, stations de travail et ordinateurs portables sans compromettre l’autonomie de l’utilisateur final en superposant la stratégie de sécurité dans le logiciel autour des machines virtuelles de bureau. Server virtualization offers large potentials for energy savings. Server consolidation by virtualization reduces power consumption by strongly reducing the number and increasing the utilization of physical servers. Established virtualization platforms like VMWare, Microsoft HyperV and Citrix XEN offer many additional features like high availability, failover, distributed resource scheduling, load balancing, automated backup functions, distributed power management, server-, storage- and network vmotion etc..

39 Virtualisation des serveurs

40 Présentation du marché des produits de virtualisation
VMWare ESX/ESXi, Vsphere Entrée sur le marché en 2001 Support pour la plupart des systèmes d’exploitation hôtes Puissants outils de gestion Microsoft HyperV Faible empreinte Il se branche sur les environnements informatiques existants Citrix XENServer Un moyen économique pour mettre en place la virtualisation The market leading virtualization platforms VMWare ESX/ESXi/Vsphere4, Microsoft HyperV and Citrix XEN provide effective opportunities for saving energy and administration costs. They offer support for most common standard guest operating systems like Windows Server 2003/2008, Windows XP, Vista, Windows7 and SUSE/Redhat Linux and provide powerful management consoles for administration of smaller server environments as well as data center level administration.

41 Consommation d’énergie (kWh/an)
Economies d‘énergie par virtualisation des serveurs Exemple 1: virtualisation Server+Desktop Consommation d’énergie (kWh/an) Anciens serveurs et équipements de stockage 21 314 Anciens PCs 29 523 Total ancienne situation 50 837 Nouveaux serveurs et équipements de stockage 16 934 Clients légers 2 790 Total nouvelle situation 19 724 Virtualization is one of the most powerful technologies for reducing energy demand in data centres. Consolidation of server hardware concentrating workload on a lower number of physical servers allows energy savings between 40 and 80% and sometimes even more depending on the specific case. Current technology allows to implement virtualization with consolidation factors of at least depending on the specific systems and requirements. Here another virtualization example from SUN involving both server consolidation and desktop virtualisation. The case has been conducted in a small municipality in Germany is shown. The energy savings achieved were about 60%. Fig. Virtualisation Server et Desktop (SUN 2009)

42 Economies d‘énergie par virtualisation des serveurs Exemple 2: Virtualisation des serveurs
Virtualization is one of the most powerful technologies for reducing energy demand in data centres. Consolidation of server hardware concentrating workload on a lower number of physical servers allows energy savings between 40 and 80% and sometimes even more depending on the specific case. Current technology allows to implement virtualization with consolidation factors of at least depending on the specific systems and requirements. Here another virtualization example from SUN involving both server consolidation and desktop virtualisation. The case has been conducted in a small municipality in Germany is shown. The energy savings achieved were about 60%. Virtualisation des serveurs au Ministère de l‘environnement en Allemagne

43 Outils logiciels de planification de la virtualisation et calcul ROI/TCO (MAP-Toolkit)
Fonctionnalités Détecte les clients, les serveurs et les applications dans l’environnement informatique Réalise les évaluations de la migration et de la virtualisation Génération automatique de rapports et de proposition Adaptations des solutions aux petites comme aux grandes entreprises Calcule les économies d’énergie et présente des propositions pour la virtualisation Rapport et proposition de migration de serveurs: reporting Windows Server et “virtualized guests by hosts” Rapport et propositions de migration de la virtualisation d’application Microsoft: recommandations pour l’application de la virtualisation à l’aide de App-V. The Assessment and Planning (MAP) Toolkit from Microsoft supports planning for migration to energy efficient computing technologies. The MAP-Toolkit is a inventory, assessment, and reporting tool that can assess IT environments for various platform migrations and virtualization without the use of software agents. MAP’s automated inventory and readiness assessment reports generate specific upgrade recommendations for migration to power-saving Windows Vista and Windows Server 2008 operating systems and also for virtualization. It provides recommendations how physical servers can be consolidated in a Microsoft Hyper-V virtualized environment.

44 Calculateur ROI/TCO de Microsoft
In addition the Microsoft Integrated Virtualization ROI Tool supports the calculation of potential power cost savings with Hyper-V prior to deployment. The Microsoft Integrated Virtualization ROI Tool shown in Figure was developed independently by ex-Gartner TCO/ROI experts at leading ROI tool developer Alinean, Inc. The tool supports IT managers in examining current production servers, development servers, desktop and application virtualization opportunities by quantifying the potential savings, service level benefits, investments and ROI for Microsoft Virtualization solutions. The tool collects specific information about current costs and opportunities for improvement and projects potential costs and benefits for various optimization strategies using the Microsoft Virtualization solutions. Alinean and Microsoft experts conducted market research to assess typical costs and savings for similar company type and size.

45 Calcul de TCO/ROI à l‘aide du calculateur VMWare
The TCO/ROI methodology used by VMWare was validated with ex-Gartner ROI/TCO experts at consultancy AlineanInc. to quantify the cost savings and business value of VMware solutions. The methodology is based on proven financial techniques, industry research, VMware field and customer data and user metrics to quantify and compare the TCO savings, required investments and business benefits of implementing VMware virtualization solutions. The methodology is applied in the VMware TCO / ROI Calculator, an on-line tool designed to support organizations in collecting key information about their opportunities for improvement and to quantify the benefits that can be achieved with virtualization solutions. Based on user-specific data the key figures like savings, investments, ROI, NPV savings, TCO opportunities and payback period are calculated. Where specific user data is not available, statistical data from industry is provided and may be used. The TCO /ROI methodology first helps organizations to quantify the current cost of ownership for IT and infrastructure before virtualization.

46 Calcul de TCO/ROI à l‘aide du calculateur VMWare
The TCO analysis compares the virtualization scenario with the business as usual scenario to achieve the change in TCO The ROI analysis compares the net benefits with the incremental investment as a percentage to illustrate the ratio of returns versus investment (ROI = net benefits / investment). The payback period analysis determines the duration till net benefits of the proposed solution exceed the cumulative investment in the project. In summary virtualization projects have a clear return on investment (ROI) as server consolidation reduces hardware as well as power and cooling costs and advanced features cut down on management overhead. However ROI calculations are still an essential element for successful virtualization projects. The best ROI calculations take all costs (hardware, software and several hidden costs) into account and fully quantify the benefits of server virtualization projects. With accurate information about virtualization ROI and total cost of ownership (TCO) the implementation of virtualization projects can be strongly facilitated. Calculations also help to discover potential problems in the project planning. The methodology used in the tools is based on proven financial techniques, industry research and customer data and metrics. TCO savings, required investments and business benefits of virtualization solutions are analysed.

47 Gestion d‘alimentation par migration des serveurs: Outil DPM de VMWare
VMWare Vsphere4 Distributed Power Management (DPM) in a DRS cluster can be used to reduce the power consumption of ESX hosts. DPM monitors the resource use of the running virtual machines in the cluster. If there is significant excess capacity DPM recommends to move some virtual machines between hosts and to put some hosts into standby mode to conserve power. In case of insufficient capacity DPM will recommend power on standby hosts again to fully powered active state. Power management can be configured to operate in either manual or automatic mode. In manual mode the user must confirm host power state recommendations for migration. In automatic mode vCenter Server migrates virtual machines and moves hosts into or out of standby mode automatically.

48 Gestion d‘alimentation avec la migration DPM (distributed power management) Fonctions de l‘outil de migration DPM Une évaluation précise de la demande en ressources du workload. La surestimation peut entraver les économies d’énergie. La sous-estimation peut gêner la performance voire entrainer le non-respect des accords du niveau de qualité de service (SLA). Eviter de mettre sous et hors tension les serveurs trop souvent. Cela réduit la performance à cause de la réalisation d’opérations inutiles par VMotion. Réaction rapide à l’augmentation soudaine de la charge : ainsi les économies d’énergie n’entravent pas les performances. Sélection appropriée des hôtes à mettre sous/hors tension. Déconnecter un hôte hébergeant un grand nombre des machines virtuelles peut contrarier la plage d’utilisation visée d’un ou plusieurs hôtes de plus petite taille. Redistribuer intelligemment les machines virtuelles après que les hôtes soient mis sous/hors tension en tirant profit continuellement de la planification des ressources distribués (DRS). The goal of VMware DPM is to keep the utilization of ESX hosts in the cluster within a target range, subject to the constraints specified by the VMware DPM operating parameters and those associated with HA and DRS. VMware DPM evaluates recommendation for host power on if there are hosts with utilization levels above this range and host power off if there are hosts with utilization levels below. Although this approach might seem straightforward, there are key challenges that VMware DPM must overcome to be an effective power saving solution. VMware DPM is run as part of the periodic DRS invocation (every five minutes by default), immediately after the core DRS cluster analysis and rebalancing step is complete.

49 Differentes options pour utiliser l‘outil VMware DPM
Réglage de Vmware DPM en mode automatique et laissez l’algorithme DPM décider quand mettre les hôtes sous/hors tension. Réglage en mode plus conservateur ou agressif en décalant le seuil DPM dans les paramètres du cluster ou le ratio demande/capacité cible. Augmenter le ratio demande/capacité cible. Pour économiser plus d’énergie en augmentant l’utilisation de l’hôte (plus de machines virtuelles sur moins d’hôtes), ce ratio peut être augmenté de la valeur par défaut (63%) à 70% par ex. Utiliser VMware DPM pour forcer la mise sous tension de tous les hôtes avant les heures d’activité and ensuite la mise hors tension progressive après la période de pic d’activité. The basic way to use VMware DPM is to power on and shut down ESX hosts based on utilization patterns during a typical workday or workweek. For example, services such as , fax, intranet, and database queries are used more intensively during typical business hours from 9 a.m. to 5 p.m. At other times utilization levels can dip considerably, leaving most of the hosts underutilized. Their main work during these off hours might be performing backup, archiving, servicing overseas requests etc.. In this case consolidating virtual machines and shutting down unneeded hosts during off hours reduces power consumption.

50 Exigences au niveau de l‘alimentation et du refroidissement après virtualisation
Adaptation d’infrastructure à la charge Dynamic power variation in virtualized environments is a major reason for moving towards row or rack cooling. Virtualization can reduce cooling load in a data centre to very low levels which can cause negative effects on the cooling equipment (e.g. compressor load). Thus right sized power and cooling is another crucial element for successfully exploiting energy saving potentials by virtualisation. Accurate information about demand for power and cooling capacities is crucial to ensure that infrastructure capacity can be adapted to changing load profiles over time. Capacity management provides instrumentation for real time monitoring and analysis of information about power-, cooling- and physical space capacities and enables the effective and efficient use of resources throughout the data center. Areas of available or very low capacity can be identified. Une information précise sur la demande des capacités d’alimentation et de refroidissement est essentielle afin d’assurer que la capacité d’infrastructure puisse être adaptée selon les changements de profils de charge dans le temps.

51 Demande de refroidissement variable pendant la migration de serveur
Virtualization can cause increased rack power density and dynamic change of local density, thus locally increasing the demands on power and cooling infrastructure while overall reducing power demand. The basic power and cooling requirements of virtualization are similar to those already introduced by high density blade systems in the past. There are technologies available now to meet the power and cooling needs of a virtualized environment. If power and cooling capacity is not adapted to the lower load levels, PUE will worsen after virtualization, which reflects the additional overhead of idle power and cooling capacity. While virtualization reduces overall power consumption in a data centre, servers are often grouped in ways that create local “hot spots”. Virtualization also allows applications to be dynamically moved, started and stopped causing changing loads over time and space. In a conventional environment involving traditional raised-floor, room based cooling can be configured to adequately cool hot spots by rearranging vented floor tiles. With dynamic loading of servers, the thermal profile can change with no physical changes in the equipment. Une solution à cette difficulté est de positionner les unités de refroidissement dans les rangées et de les régler pour les asservir aux changements de température. L’emplacement des unités de refroidissement près des serveurs réduit le cheminement de l’air entre le refroidissement et la charge.

52 Fonctions de la gestion de capacité d‘alimentation et de refroidissement
Modification de la densité et de l’emplacement de la charge – La virtualisation peut faire apparaitre des zones chaudes (hotspots) sans ajouter/déplacer de serveurs physiques puisque la gestion d’énergie distribuée (DPM) gère la mise sous/hors tension des serveurs. Changements dynamiques – Maintenir la stabilité du système peut devenir difficile notamment si plusieurs parties apportent des modifications sans coordination centralisée. Manipulation des interdépendances – La virtualisation complexifie les interdépendances et les effets secondaires dans les relations entre les capacités d’alimentation, de refroidissement et d’espace. Optimisation de l’alimentation et de refroidissement – Pendant la virtualisation, la charge d’alimentation et de refroidissement baisse et augmente à nouveau au fur et à mesure que des nouvelles machines virtuelles sont créées. Cela peut être géré par l’utilisation de systèmes d’alimentation et de refroidissement évolutifs. Capacity management provides instrumentation for real time monitoring and analysis of information about power-, cooling- and physical space capacities and enables the effective and efficient use of resources throughout the data center. Areas of available or very low capacity can be identified.

53 Adaptation de l‘infrastructure d‘alimentation et de refroidissement après une virtualisation
Réduction de la capacité d’alimentation et de refroidissement afin de s’adapter à la charge Ventilateurs à vitesse variable et pompes à régulateur contrôlés par la demande de refroidissement Utiliser des équipements avec une efficacité plus élevée Architecture de refroidissement avec des circuits d’air raccourcis (par exemple au niveau de la rangée) Système de gestion de la capacité adaptant la capacité à la demande Panneaux d’obturation pour réduire le mélange d’air au sein du rack After virtualization power consumption will always be less because of reduced server population and reduction in power consumed by the cooling systems. Data center infrastructure efficiency however will be low if power and cooling systems are not downsized and adapted to align with the new smaller IT load. In summary when carrying out virtualization projects, power and cooling capacity have to be adapted to the lower load levels. Otherwise PUE will increase reflecting additional overhead for power and cooling capacity. While virtualization reduces overall power consumption in a data center it may cause changing loads over time and space. With dynamic loading of servers the thermal profile can change without physical changes in the equipment. In a conventional environment with traditional raised-floor room based cooling can be configured to adequately cool hot spots by rearranging vented floor tiles.

54 Recommandations de bonnes pratiques

55 Recommandations de bonnes pratiques Achats & Configuration de matériel
Considérer les exigences de performance réelles de vos workloads et éviter le surprovisionnement de la puissance de calcul. Définir les critères d’achats en fonction des exigences pratiques. Examiner attentivement les besoins de mise à niveau et ajuster les spécifications aux besoins réels. Des mises à niveau complètes sont rarement nécessaires en pratique. Considérer les critères d’efficacité énergétique pour serveurs, développés par Energy Star. Eviter le surprovisionnement de l’alimentation. Ceci est malheureusement très courant.

56 Recommandations de bonnes pratiques Achats & Configuration de hardware
Considérer des alimentations à haute efficacité, par exemple des séries 80PLUS Platine et Or. Améliorer l’efficacité énergétique des alimentations redondantes en utilisant les modes économies d’énergie (options basse consommation en veille pour les processeurs redondants) Exiger des fabricants les résultats du benchmark par exemple SPECpower_ssj2008 (SPEC-SERT dès que disponible). Pour SPECpower_ssj2008, tenir compte des point suivants : Les serveurs sont souvent testés dans une configuration réduite ; Examiner l’efficacité à différents niveaux de charge ; SPECpower_ssj2008 est ciblé processeur et peut ne pas fournir les informations nécessaires pour des workloads intenses en mémoire, disque et E/S.

57 Recommandations de bonnes pratiques Planification et gestion IT
Bénéficiez de niveaux de résilience du matériel informatique optimisés. Trouvez le juste niveau, au regard de l’impact commercial attendu d’incidents de service pour chaque service déployé. Servez vous des outils de gestion des serveurs pour un déploiement efficace des services et de planification de capacité pour obtenir des systèmes hautement consolidés et virtualisés. Activer les options de gestion d’énergie par défaut au niveau du processeur Désaffecter les services non utilisés et retirer les matériels. Evaluer la possibilité de désaffecter les services à faible valeur commerciale.

58 Recommandations de bonnes pratiques Mise en place de serveurs lame
Définir et évaluer les principales raisons pour la mise en œuvre de la technologie à lame dans le datacentre (contrainte d’espace par ex.). Avant tout, la décision d’une telle mise en place doit être basée sur des critères décisionnels clairs. Évaluer les avantages escomptés par rapport à la technologie rack et vérifier le caractère réaliste des attentes. Vérifier si la virtualisation peut être une solution alternative compte tenu des objectifs définis. Évaluer le coût total de possession (TCO) et l’efficacité énergétique par rapport à d’autres options (d’après les données fournisseurs).

59 Recommandations de bonnes pratiques Systèmes lame – planning et évaluation
Définir les charges de travail et les niveaux prévus pour les systèmes à lames. Comparer la rentabilité et l’efficacité énergétique entre fabricants. Exiger du fournisseur une information produit sur : Le coût total de possession(TCO) ; L’efficacité énergétique globale (par ex. SPECpower_ssj2008, SPEC-SERT dès sa sortie) ; Les composants matériels efficaces (efficacité et optimisation de l’alimentation) ; Les outils de gestion, surtout pour l’énergie et l’optimisation de la conception du système. Sélectionner l’équipement présentant la plus haute efficacité énergétique pour le type et le niveau de charge prévus et les bonnes options de gestion de l’énergie.

60 Recommandations de bonnes pratiques Gestion de systèmes lame
Utiliser les outils de gestion afin d’optimiser l’efficacité énergétique des systèmes lame Utiliser les outils de gestion et les équipements réseau et alimentation intelligents pour effectuer un suivi de la consommation énergétique et de la charge de travail. Analyser les options pour équilibrer et gérer les charges et la consommation au niveau des châssis et des racks. Utiliser les fonctions de capping et d’équilibrage de l’énergie du châssis.

61 Recommandations de bonnes pratiques Infrastructure pour systèmes lame
Mettre en place un groupe de travail avec les experts responsables de refroidissement et de l’infrastructure Vérifier dans quelle mesure l’infrastructure d’alimentation et de refroidissement existante est favorable à l’utilisation de la technologie lame. Définir la densité de puissance/de chaleur prévue et demandée par rack et au total. Vérifier: Si la densité de puissance/de chaleur peut être soutenue par l’infrastructure existante. Est-ce que les capacités existantes peuvent être alloués avec un effort raisonnable? Si un refroidissement supplémentaire est nécessaire. Définir l’option appropriée et évaluer les coût et l’efficacité. Si une zone spéciale haute densité doit être définie et conçue pour les système lame. Evaluer les coûts et l’efficacité. Définir l’option appropriée au niveau système (racks et rangées) avec les experts en infrastructure.

62 Recommandations de bonnes pratiques Virtualisation des serveurs
Développement d’une stratégie de virtualisation Identifier les équipements candidats à la virtualisation Exigences en termes de performances du processeur, de la mémoire requise, du réseau, de l’intensité E/S du disque, de la configuration du système d’exploitation Sélectionner le type de virtualisation et le produit Adapter les processus informatiques et les workflows Mettre en place les machines virtuelles, les bureaux virtuels, les processus de récupération et sauvegarde des données, l’administration de correctifs, les considérations de disponibilité

63 Recommandations de bonnes pratiques Virtualisation des serveurs
Sélection du logiciel, par analyse des avantages/inconvénients des différents produits : Interface d’administration Coût de la licence pour l’hyperviseur, le système d’exploitation hôte, etc. Caractéristiques de la gestion, dont la migration vers les serveurs virtuels et les outils de gestion de l’alimentation Examen des mesures adéquates au niveau de l’infrastructure Le système de refroidissement peut faire face à: Des densités de la charge de refroidissement plus élevées Des changements dynamiques des densités dus à la migration et l’extinction de serveurs Interdépendances et effets secondaires partagés

64 Recommandations de bonnes pratiques Considération de ROI/TCO dans la virtualisation
Le succès d’une planification optimisée et d’une mise en place de la virtualisation implique une évaluation des TCO et ROI en considérant les aspects suivants : Les outils de calcul de ROI sont disponibles auprès des vendeurs des technologies Ce calcul devrait commencer par les facteurs les plus importants Les modèles devront être affinés en fonction des besoins spécifiques de votre structure L’examen des coûts devra comprendre les coûts de personnel, de la mise à niveau du matériel informatique (serveurs, unités de stockage, réseau, infrastructure) et le coût de l’arrêt potentiel des systèmes ainsi que les différents types de réductions des coûts (par exemple sauvegarde, récupération, disponibilité, etc.)

65 Discussion Questions relatives à ce module

66 Questions/discussions relatives à ce module
Combien représente en moyenne la consommation énergétique des serveurs? Quel sont les principaux avantages de la virtualisation des serveurs? Quelles sont les économies d’énergie potentielles liées à la virtualisation? Evoquez l‘une des six approches pour optimiser la capacité d‘alimentation. Selon vous, quels sont les principaux obstacles à l‘efficacité énergétique des équipements de serveurs?

67 Suggestions de lectures complémentaires
Livres blancs Publications en ligne Etc.

68 Lectures complémentaires
Five Ways to Reduce Data Center Server Power Consumption Using Virtualization to Improve Data Center Efficiency Proper Sizing of IT Power and Cooling Loads

69 Lectures complémentaires
Unused Servers Survey Results Analysis A Roadmap for the Adoption of Power-Related Features in Servers An Analysis of Server Virtualization Utility Incentives


Télécharger ppt "Module 3 Equipement de serveurs"

Présentations similaires


Annonces Google