La présentation est en train de télécharger. S'il vous plaît, attendez

La présentation est en train de télécharger. S'il vous plaît, attendez

Programmation linéaire, Jeux, Complexité Professeur Michel de Rougemont

Présentations similaires


Présentation au sujet: "Programmation linéaire, Jeux, Complexité Professeur Michel de Rougemont"— Transcription de la présentation:

1 Programmation linéaire, Jeux, Complexité Professeur Michel de Rougemont

2 Jeux et Complexité 1.Jeux, Equilibres 2.Complexité, NP-complétude 3.Programmation entière 4.Approximation

3 Jeux à somme nulle Deux joueurs I et II: Gain de II = - Gain de I Jeu Morra: chaque joueur cache 1 ou 2 Euros et cherche à deviner le choix de lautre joueur. Il gagne sil devine correctement. Si 1 seul joueur gagne, son gain est le montant caché total, payé par lautre joueur, sinon le gain est de 0

4 Gains des joueurs Résultat du jeu : Joueur I : Montrons que la réponse de II peut être pure Toute solution pure doit satisfaire

5 Programme linéaire Conclusion Joueur II peut jouer une stratégie pure

6 Exemple: Morra Conclusion Solution x*= [0,3/5,2/5,0] Résolution par simplex. Trouver une solution initiale

7 Théorème Minimax Situation pour le joueur II Problème dual du précédent. Théorème : Max Min = Min Max

8 Equilibre de Nash Solution x*= [0,3/5,2/5,0]. Pour le dual y*= [0,3/5,2/5,0]. Solution (x*,y*) est un équilibre de Nash, une paire de stratégies telles que: Les stratégies sont des meilleures réponses mutuelles (B=-A). Généralisation aux jeux à somme non nulle.

9 Exemple simple Exemple: Matrice Programme linéaire Solution x*= [1/2, 1/2] Interprétation graphique: Sommet de lenveloppe inférieure 1

10 Jeux matriciels Deux joueurs: les gains des I et II sont définies par deux matrices A,B de même dimension. Pour n joueurs, n hypercubes. Solution possible: x*= [2/3,1/3], y*= [1/3,2/3] Solution (x*,y*) est un équilibre de Nash.

11 Jeux matriciels Par dualité: Pour le joueur II:

12 C.N.S. pour être un équilibre de Nash Un couple (x,y) est un équilibre de Nash ssi il existe u,v tel que: Programme linéaire + contraintes quadratiques de complémentarité. Simplex + complémentarité= Lemke-Howson

13 Algorithme de Lemke-Howson Procédure algorithmique pour trouver des équilibres: Simplex+ complémentarité. LH Graphes dans les simplex de I et II Extrémités du simplex Points frontières Exemple :

14 Algorithme de Lemke-Howson LH Graphes dans les simplex de I et II Extrémités du simplex Points frontières Exemple :

15 Algorithme de Lemke-Howson Lignes de A: Colonnes de B:

16 Algorithme de Lemke-Howson Coloriage LH Graphes dans les simplex de I et II 5 couleurs: (1,2) pour I et (3,4,5) pour II. Coloriage dans le simplex de I:

17 Algorithme de Lemke-Howson (1,0) (0,1) (2/3,1/ 3) (1,0,0) (0,1,0) (0,0,1) (0,1/2,1/2) Couleurs Lemke-Howson (2/3,0,1/3) 4 (1/2,1/ 2) 5 5 2

18 Algorithme de Lemke-Howson Lemke-Howson: Exemple: Procédure algorithmique: Commencer en (0,0),(0,0,0) et choisir une couleur à exclure pour x puis pour y. On termine sur un équilibre de Nash.

19 Exemple 2 Algorithme LH 1.Points frontières pour I: (1/3,2/3) et (2/3,1/3) pour II: 2. Coloriage des points: Daprès B. Von Stengel, Computing Equilibria for two-person games, Handbook of Game theory with Economic applications, 2002.

20 Coloriage Lemke-Howson (1,0) (0,1) (2/3,1/3) (1,0,0) (0,1,0) (0,0,1) (0,1/3,2/3) Couleurs Lemke-Howson (2/3,1/3,0) (1/3,2/3)

21 Equilibres de lexemple 2 Equilibres de Nash 1.(1,0) et (0,0,1) 2.(1/3,2/3) et (2/3,1/3,0) 3.(2/3,1/3) et (0,1/3,2/3)

22 Existence dEquilibres Lemme de Sperner Point-fixe Brouwer Equilibre Arrow-Debreu Point-fixe Kakutani Equilibre Nash Preuves non-constructives.

23 Lemme de Sperner Etiquetter un simplex: Chaque point frontière ne peut pas avoir létiquette du sommet opposé. Chaque point intérieur a une étiquette arbitraire Sperner : il existe un triangle Commencer sur le côté gauche avec une arête 0-1 qui détermine un triangle qui admet une autre autre arête 0-1. On parcourt ainsi des triangles 1 seule fois. Il existe un nombre fini de triangles et on doit terminer sur

24 Point fixe de Brouwer Brouwer: 0 12 Soit un découpage en triangles de plus en plus fins. Déterminer un coloriage en détectant le côté traversé par. Cest un étiquettage de Sperner. Il existe un triangle t i de centre m i. Pour une séquence de m i il existe une sous-séquence x i qui converge vers x, point fixe. 1

25 Point fixe de Kakutani Soit: Fonction à valeur convexe. Graphe continuité Preuve: réduire le problème à lexistence dun point fixe de Brouwer. Définir à létape i de la triangulation Sur la triangulation. Ensuite par interpolation linéaire. La fonction est continue et a un point fixe en x i. La séquence des x i. Admet une sous- séquence qui converge vers x*.

26 Existence de Nash Soit: Preuve: montrer que la fonction est à valeurs convexes et continue comme graphe. On applique Kakutani et on obtient un équilibre de Nash.

27 Equilibre Arrow-Debreu Entrée: Ensemble B dacheteurs Ensemble A de biens divisibles Vecteur M de valeurs m i entières pour chaque acheteur Matrice Utilité: u i,j donnant lutilité du produit i pour lacheteur j. Sortie: vecteur de prix p i pour chaque produit i Chaque acheteur maximise son utilité Tout est dépensé Tout est acheté

28 Equilibre Arrow-Debreu Arrow-Debreu: il existe un vecteur p qui résout le marché. Preuve: définir un potentiel pour p. Si la demande trop forte, augmenter p Daprès Brouwer, il existe un point fixe qui résoud le marché. Observations: Léquilibre peut-être non calculable au sens des réels (Richter et Wong) Algorithme polynomial au sens BSS (Devanur, Papadimitriou, Saberi, Vazirani)

29 Classes PPA et PPAD PPA : Polynomial Parity Argument PPAD : Polynomial Parity Argument in Directed graphs A est dand PPA (PPAD) si: Il existe une TM avec états. Graphe détats de degré au plus 2. Etat (0,0,..0) est une feuille. Problème: trouver une autre feuille. (Papadimitriou, On the Complexity of the Parity argument, JCSS 1994) Exemple: Sperner est dans PPAD

30 NP -complétude Existe-t-il un algorithme polynomial? Exemple SAT (variables booléennes) Pas dalgorithme polynomial connu. Définition : Un problème est NP sil est vérifiable en temps polynomial. A est réductible à B sil existe une fonction f calculable en temps polynomial t.q. A est NP-complet si A est NP et tout B de la classe NP est réductible à A. Théorème. SAT est NP-complet

31 Programmation linéaire en nombres entiers Théorème. PL est NP-complet Réduction à SAT Pas dalgorithme polynomial connu. Définition : Un problème doptimisation est sil existe un algorithme polynomial dont la solution A(x) est t.q. Théorème. Si PL est alors P=NP.

32 Couverture, Hamiltonicité, Voyageur de commerce Couverture : ensemble (minimum) darêtes qui couvre tous les nœuds. Circuit Hamiltonien : circuit qui passe une seule fois par tous les nœuds. Voyageur de Commerce : circuit hamiltonien qui minimise Théorème : ces 3 problèmes sont NP-complets

33 Couverture est approximable Couverture minimum : ensemble (minimum) darêtes qui couvre tous les nœuds. Algorithme : prendre une arête e=(u,v), lajouter à C et retirer u et v au graphe. Comment évaluer Tout nœud est couvert On en déduit : Algorithme 0.5 approximatif.

34 Voyageur de commerce nest pas approximable VC : n arêtes qui définissent un circuit hamiltonien de coût minimum. Sil existe un algorithme dapproximation, alors P=NP. Réduire HAM à Soit Gn donné : introduire des coûts de 1 pour les arêtes de Gn et de pour les autres. Si on approxime VC à près, alors si la solution est proche de n, HAM est vrai sinon HAM est faux. Pas dalgorithme dapproximation.

35 Complexité et approximation 3 solutions possibles: Problème est approximable pour un (Couverture) Problème est approximable pour tout Knapsack (Sac-à-dos) Problème est non approximable (VC) Approximation par échantillonnage MAXCUT, 3COL. Estimer ces fonctions sur des sous- graphes aléatoires et faire la moyenne. G

36 Applications 1.Recherche opérationnelle classique. 2. Analyse dalgorithmes : Simplex est polynomial en perturbation (smoothed complexity, Spielman 2001) 3. Jeux et Complexité. Les joueurs ont des ressources bornées. Les équilibres changent lorsquon prend en compte la complexité. 4. Mécanismes. Quel est le jeu lorsquon part dun équilibre? Enchères, enchères combinatoires. 5. Economie de linformation. Comment construire des modèles de valeur pour: un site, un , un formulaire?


Télécharger ppt "Programmation linéaire, Jeux, Complexité Professeur Michel de Rougemont"

Présentations similaires


Annonces Google