La présentation est en train de télécharger. S'il vous plaît, attendez

La présentation est en train de télécharger. S'il vous plaît, attendez

Analyse des données des puces ADN On a deux images de la puce à partir des quelles il faut réussir à évaluer lexpression dun gène. On procède par rapport.

Présentations similaires


Présentation au sujet: "Analyse des données des puces ADN On a deux images de la puce à partir des quelles il faut réussir à évaluer lexpression dun gène. On procède par rapport."— Transcription de la présentation:

1 Analyse des données des puces ADN On a deux images de la puce à partir des quelles il faut réussir à évaluer lexpression dun gène. On procède par rapport à un échantillon de référence. Pour cela, on utilise deux marqueurs Cy3 et Cy5 sur deux échantillon distincts (dont un est constitué de cellules normales et servira de référence). On mesure la quantité de signal dans la longueur d'onde démission du fluorochrome vert et la quantité de signal dans la longueur d'onde démission du fluorochrome rouge. Puis on normalise ces quantités en fonction de divers paramètres (quantité de matériel biologique de départ dans chaque condition, puissance démission de chaque fluorochrome,...). On suppose alors que la quantité d'ADN fluorescent fixée est proportionnelle à la quantité d'ARNm correspondant dans la cellule de départ et on calcule le ratio fluorescence rouge / fluorescence verte. Si ce ratio est supérieur à 1 (rouge sur l'image en fausses couleurs), le gène est plus exprimé dans la seconde culture, si ce ratio est inférieur à 1 (vert sur l'image en fausses couleurs), le gène est moins exprimé dans la seconde culture.

2 Acquisition des données Scanner la puce Évaluer quantitativement chaque spot Soustraire le signal de bruit Normaliser Transformer en tables dintensités de fluorescence (organisme gènes)

3 Défauts courants

4 Variabilité des données de transcriptome Les données de puces à ADN sont très variables (mesures de niveaux de mARN) Toute mesure de milliers de valeurs trouvera des différences importantes dues aux fluctuations aléatoires (distribution normale) Il faut utiliser des méthodes statistiques et de réplication pour vérifier que les différences sont réelles Il faut utiliser des réplications réelles (patients différents, expériences différentes) Sources potentielles de problèmes : –Analyse dimage identifier et quantifier les spots –Scannerisation Laser et détecteurs Chimie des marqueurs fluorescents –Hybridisation Température, durée, mélange, … –Étiquetage des sondes –Extraction dARN –Variabilité de nature biologique

5 low variability signal noise difference between group means variability of groups = X T - X C SE(X T - X C ) = __ __ Comparer la moyenne de deux groupes

6 Etude des radiations Danger indiscutable dans certains cas. En particulier pour les fortes doses dirradiation. Quel impact des faibles doses ? Biologiquement aucun détecté Y a-t-il dautres effets ?

7 Protocole expérimental S. Cerevisiae en croissance exponentielle (séquencée complètement et eucaryote avec peu de gènes). Six cultures (Irradiées I) exposées pendant 20 heures entre 15 et 30 mGy/h Douze cultures non exposées (Non Irradiées NI) Mesure effectuées sur puce Corning où lhybridation a été faite avec double marquage fluorescent (Cy3 pour les cADN contrôles et Cy5 pour les cADN étudiés).

8 Normalisation des données La normalisation a été réalisée par LOWESS ( LOcally WEighted Scatterplot Smoothing ), Julie PEYRE & Anestis ANTONIADIS (IMAG) Où R et G sont les niveaux dintensité de Rouge et de Vert.

9 Analyse du transcriptome sur la levure détectable ?Lirradiation à de faibles doses est-elle détectable ? Nombre de gènesNombre de gènes impliqués dans la réponse à une irradiation à faible dose ? Groupes de gènesGroupes de gènes impliqués dans la réponse à lirradiation et de quelle manière ? deviner le traitementEst-il possible de deviner le traitement subi par une levure en regardant lexpression de son génome ? généraliser cette approchePeut-on généraliser cette approche à dautres types de traitements (pollutions, cancer,...)

10 Les sources de problèmes Présence de bruit dans les données à deux niveaux : Imprécision de la mesure : bruit classique supposé gaussien, bruit qui est très élevé pour certains gènes (cf doubles mesures) Présence de valeurs aberrantes dues à un problème lors de l'hybridation Données déjà normalisées Nombreux attributs : 6157 gènes Très faible nombre dinstances : 12 cultures non-traitées, 6 irradiées Classes déséquilibrées (elles ne contiennent pas le même nombre d'éléments) Absence d'indépendance conditionnelle probabiliste entre les gènes

11 Démarche Méthode directe de discrimination : illusoire mais essayée… –On conserve les gène dont le log ratio a dépassé 3 fois la valeur 1 (par exemple) –Trop de « solutions » –Aucune garantie sur chacune delles Prétraitement : Sélection dattributs –Approche directe –Approche « wrapper » filtrage –Approche par filtrage Réduction de dimensionnalité –Groupement de gènes a priori (réseaux de régularisation)

12 Sélection (estimation) dattributs Hypothèse de linéarité –Chaque attribut pertinent a une corrélation directe (mesurable) avec la classe å Quelle garantie sur chaque attribut sélectionné ? SélectionSélection –Chaque attribut passe un test EstimationEstimation critère de performance –On ordonne les attributs en fonction dun critère de performance å Quel seuil (choisi globalement) ? å Quelle confiance ?

13 Sélection Techniques classiques (FOCUS, RELIEF, Wrappers, Embeded techniques) Trop peu de garantie sur chaque corrélation détectée (attribut) hypothèse nulle globale å Comparaison à hypothèse nulle globale les biologistes å Interprétation / confirmation par les biologistes

14 Utilisation dANOVA Deux classes (Irradiée / Non Irradiée) N ( 1, ) et N ( 2, ) Comparaison –Variance intra-classe –Variance inter-classes Hypothèse nulle H 0 : 1 = 2 Rejet si significativement trop grand par rapport aux quantiles de la foi F (k-1,n-k)

15 Utilisation dANOVA (suite) p-valueOn peut aussi calculer la p-value pour chaque gène et ordonner les gènes probabilité que le test rejette lhypothèse H 0 à tort

16 SAM (Significance Analysis of Microarrays) Constante > 0 déviation standard Pour chaque gène : Gènes potentiellement significatifsGènes potentiellement significatifs : gènes dont le score d(g) est supérieur au score moyen du gène obtenu après permutations des classes, de plus dun certain seuil faussement significatifsCalcul du nombre de gènes faussement significatifs : nombre moyen de gènes faussement significatifs pour chaque permutation Taux de fausse découverteTaux de fausse découverte (FDR)

17 Une lame L est vue comme un point dans un espace à p = 6157 dimensions On cherche ses k plus proches voisins dans la même classe et on les note H i (nearest Hit) On calcule ses k plus proches voisins dans lautre classe et on les note M i (nearest Miss). où est la projection selon gène du point x, et m est le nombre total de lames. Le poids calculé pour chaque gène gène est ainsi une approximation de la différence de deux probabilités comme suit : Poids(gène) = P (gène a une valeur différente / k plus proches voisins dans une classe différente) - P (gène a une valeur différente / k plus proches voisins dans la même classe) Algorithme polynomial : (pm 2 ) Rôle de k : prise en compte du bruit Pas de supposition dindépendance des gènes RELIEF

18

19 Sélection des attributs Y a-t-il vraiment de linformation dans les données ? Quels gènes retenir ? Avec quelle confiance ?

20 Comparaison à lHypothèse nulle Nombre de gènes dont le poids dépasse la valeur repérée en abscisse rouge : Avec les classes réelles ; bleu : Courbe moyenne obtenue avec des classes aléatoires

21 Précision ou rappel Il faut choisir entre : Une liste contenant presque tous les gènes impliqués mais comportant des faux-positifs Une liste de gènes impliqués de manière quasi-certaine dans la réponse à lirradiation (quitte à ne pas avoir tous les gènes impliqués)

22 Répartition des meilleurs gènes

23 Tâche de classification Plusieurs techniques ont été utilisées Vote « dexperts » Technique du maximum de vraisemblance K plus proches voisins Essai de classification en aveugle sur six nouvelles lames :

24 Interprétation biologique

25 Résultats Les données reflètent-elles la présence de lirradiation ? oui Combien de gènes sont-ils impliqués ? Plus de 100 Y a-t-il des groupes de gènes impliqués et lesquels ? Oui : ATP synthesis, oxidative phosphorylation et oxidative stress response Est-il possible de déterminer si une levure est irradiée en regardant son transcriptome ? Oui et il suffit de ne regarder quun petit nombre de gènes

26 Le gène 1575


Télécharger ppt "Analyse des données des puces ADN On a deux images de la puce à partir des quelles il faut réussir à évaluer lexpression dun gène. On procède par rapport."

Présentations similaires


Annonces Google