La présentation est en train de télécharger. S'il vous plaît, attendez

La présentation est en train de télécharger. S'il vous plaît, attendez

Programmation Réseaux Illustration : Les Sockets en Java Anne-Marie Déry À travailler seuls Concepts généraux Mise en œuvre Java.

Copies: 7
Programmation Réseaux Illustration : Les Sockets en Java Anne-Marie Déry À travailler seuls Concepts généraux Mise en œuvre Java.

Programmation Réseaux Illustration : Les Sockets en Java Anne-Marie Déry À travailler seuls Concepts généraux Mise en œuvre Java.

Programmation Réseaux Illustration : Les Sockets en Java Anne-Marie Déry À travailler seuls Concepts généraux Mise en œuvre Java.

Applications distribuées et parallèlisme La communication ne doit pas rester bloquée pour un client.

Programmation Réseaux Illustration : Les Sockets en Java Anne-Marie Déry À travailler seuls Concepts généraux Mise en œuvre Java.

Programmation Réseaux Illustration : Les Sockets en Java Anne-Marie Déry À travailler seuls Concepts généraux Mise en œuvre Java.

Programmation Réseaux Illustration : Les Sockets en Java Anne-Marie Déry À travailler seuls Concepts généraux Mise en œuvre Java.

Présentations similaires


Présentation au sujet: "Programmation Réseaux Illustration : Les Sockets en Java Anne-Marie Déry À travailler seuls Concepts généraux Mise en œuvre Java."— Transcription de la présentation:

1 Programmation Réseaux Illustration : Les Sockets en Java Anne-Marie Déry À travailler seuls Concepts généraux Mise en œuvre Java

2 Réseau et département SI Couches Réseaux : protocoles TCP – UDP Programmation Réseaux Sockets Java et C Introduction aux applications réparties Programmation par Composants Expériences Industrielles Administration et sécurité des réseaux Réseaux sans fil Applications Temps Réel

3 Questions préliminaires Différences entre les protocoles de transport TCP et UDP ? Utilisation des adresses Internet ? Utilisation des ports ? Programmation sockets : avantages et inconvénients Client : ? Serveur : ? Serveur de noms ? (DNS, LDAP) ?

4 Architecture client serveur Mode de communication quun hôte établit avec un autre hôte qui fournit un service quelconque application opération Client Serveur send request send reply « protocole dapplication » marshalling

5 Comment cela fonctionne au niveau du réseau –Identification de la machine qui abrite le serveur par le client –Identification du serveur sur la machine –Canal de communication entre le serveur et le client –Construction de la trame réseau –Echange du protocole dapplication

6 Sockets Outil de communication pour échanger des données entre un client et un serveur Canaux de communication (descripteur dentrée sortie dans lesquels on écrit et sur lesquels on lit) Gestion similaire des entrées sorties standard (écran, clavier) et des fichiers

7 Un socket : une entrée sortie dédiée au réseau Gestion similaire des entrées sorties standard (écran, clavier) et des fichiers En sortie (ex. System.out) : java.io.PrintStream (ou PrintWriter) utilise un flot dirigé vers une sortie java.io.OutputStream En entrée (ex. System.in) : java.io.InputStream (ou BufferedReader)

8 Plus précisément un socket Plusieurs types de sockets : pour la communication par flot de données - fortement connectée - synchrone - type client-serveur pour communication réseau par message - en mode datagramme - en mode déconnecté pour communication réseau par diffusion

9 Exemples dapplications Un serveur dEcho Un exemple : le service SMTP Demande de citations Diffusion de citations

10 Sockets en Java ? BSD sockets UNIX au dessus de TCP ou UDP En Java toutes les classes relatives aux sockets sont dans le package java.net Une infrastructure puissante et flexible pour la programmation réseau

11 Le Package net Des Exceptions Des entrées Sorties Des Sockets …... Plusieurs hiérarchies de classes

12 Des types de Sockets ServerSocket DatagramSocket MulticastSocket Socket Object

13 Des exceptions Exception IOException SocketExceptionProtocolException UnknownHostExceptionUnknownServiceException BindException ConnectException

14 Des Entrées Sorties Object InputStream FileInputStream ObjectInputStream OutputStream FileOutputStream ObjectOutputStream FilterInputStream DataInputStream FilterOutputStream DataOutputStream

15 Autres Classes Object InetAdress DatagramPacketSocketImpl PlainSocketImpl

16 Java.net.InetAddress : nommage La classe InetAddress 2 constructeurs : un par défaut qui crée une adresse vide (cf la méthode accept sur Socket) un qui prend le nom de la machine hôte et ladresse IP de la machine. Des accesseurs en lecture : pour récupérer ladresse IP dune machine (getByName, getAllByName), des informations sur la machine hôte (getLocalHost, getLocalAddress, getLocaName) Des comparateurs : égalité (equals) et type dadresse (isMulticastAddress) …..

17 Communication Client Serveur traditionnelle Fortement connectée TCP

18 Flot de requêtes du client vers le serveur application opération Client Serveur Ouvrir connexion req1 req2 req3 reqn Fermer la connexion TCP fournit un transfert fiable, conservant lordre de transfert des octets (pipe) entre le client et le serveur Point de vue application

19 Interaction Client/server : socket TCP Serveur (sexécutant sur lhôte) Client wait for incoming connection request connectionSocket = welcomeSocket.accept() create socket, port= x, for incoming request: welcomeSocket = ServerSocket() create socket, connect to hostid, port= x clientSocket = Socket() close connectionSocket read reply from clientSocket close clientSocket send request using clientSocket read request from connectionSocket write reply to connectionSocket TCP connection setup

20 Scénario dun serveur pour un client Attente de données sur le flux dentrée Réception et Analyse des données en entrée Calcul Construction de la réponse Ecriture sur le flux de sortie Fermer le socket de communication Créer le socket de communication avec le client

21 Scénario dun client Préparer la requête lenvoyer sur le flux de sortie Attendre des données sur le flux d entrée les lire et les traiter Fermer le socket Créer le socket de connexion avec le serveur Attendre que la connexion soit établie Récupérer la socket de communication

22 TCP et Sockets 2 classes : Socket et ServerSocket (java.net package) pour les canaux de communication Classes pour le flot de données XInputStream et XOutputStream

23 Transfert de données Connexion + « Marshalling »

24 Accepter les connexions Dans un serveur ? Créer un objet socket pour écouter les demandes de connexion sur le numéro de port associé au service Créer un objet socket pour accepter une connexion d un client cet objet servira pour tous les transferts d information de ce client vers le serveur

25 Dans un serveur ? Accepter les connexions ServerSocket myService; try { myService = new ServerSocket(PortNumber); } catch (IOException e) {System.err.println(e);} Création dun objet socket pour écouter et accepter les connexions des clients Socket clientSocket = null; try {clientSocket = myService.accept();} catch (IOException e) {System.err.println(e); }

26 Demander à se Connecter = ouvrir un socket Dans un client identifier la machine à laquelle on veut se connecter et le numéro de port sur lequel tourne le serveur implique de créer un socket pour cette communication

27 Se connecter Comment ouvrir un socket ? Dans un client Socket myClient; try { myClient = new Socket("Machine name", PortNumber); } catch (IOException e) { System.out.println(e); } Machine name : machine à laquelle on veut se connecter PortNumber port sur lequel tourne le serveur (> 1023)

28 Comment envoyer une information ? Côté client : pour envoyer une requête au serveur Côté serveur : pour envoyer une réponse au client 1 Créer un flux de sortie pour le socket pour écrire linformation 2 Constituer le contenu des données à émettre (transformer entiers, doubles, caractères, objets en lignes de texte)

29 Côté Serveur Pour envoyer des informations au client Exemple dentrée sortie DataOutputStream : écrire des types de données primitifs; output= new DataOutputStream(clientSocket.getOutputStream());

30 Côté Client Côté client : pour envoyer une information au serveur Autre exemple dentrée sortie PrintStream pour afficher des valeurs des types de base (write et println) PrintStream output; try {output = new PrintStream(myClient.getOutputStream();} catch (IOException e) {System.err.println(e);} …..

31 Comment recevoir de l information ? Côté serveur : on doit lire la requête du client Côté client : on doit recevoir une réponse du serveur 1 Créer un flux d entrée pour le socket et lire l information sur le flux 2 Reconstituer les données émises ( entiers, doubles, caractères, objets) à partir des lignes de texte reçues

32 Côté Serveur pour recevoir les données dun client DataInputStream input; try { input = new DataInputStream(clientSocket.getInputStream()); } catch (IOException e) {System.out.println(e);}

33 Côté Client Côté client : pour recevoir une réponse du serveur DataInputStream : lire des lignes de texte, des entiers, des doubles,des caractères... ( read, readChar, readInt, readDouble, and readLine,. ) (writeBytes…) try {input = new DataInputStream(myClient.getInputStream());} catch (IOException e) {System.out.println(e);}

34 Autres entrées sorties echoSocket = new Socket( "jessica", 7); out = new PrintWriter(echoSocket.getOutputStream(), true); in = new BufferedReader(new InputStreamReader( echoSocket.getInputStream())); ATTENTION Le BufferedReader prend un Reader en paramètre et non un Stream Utilisation des ObjectInputStream et ObjectOutputStream Loutput doit être initialisé en premier sinon blocage à la Création du flux de sortie.

35 Entrées sorties : comment procéder ? Quid du marshalling ? linformation qui est lue doit être du même type et du même format que celle qui est écrite ATTENTION au choix de vos entrées sorties – respecter la Cohérence des données transmises Le client doit il connaître la nature des E/S du serveur pour être écrit ?

36 Comment se déconnecter ? Fermer correctement les flux dentrée sortie et les sockets en cause. Côté client Côté serveur

37 Comment fermer un socket ? Fermer les output et input stream avant le socket. Côté client output.close(); input.close(); myClient.close(); Côté serveur output.close(); input.close(); clientSocket.close(); myService.close();

38 Sockets (Communication Client serveur) Le serveur connecte le client sur un nouveau no de port et reste en attente sur le port original Client et serveur communiquent en écrivant et lisant sur un socket Le serveur est à lécoute des requêtes sur un port particulier Un client doit connaître lhôte et le port sur lequel le serveur écoute. Le client peut tenter une connexion au serveur

39 Serveur Echo Un serveur similaire à echo ( port 7). Reçoit un texte du client et le renvoie identique Le serveur gère un seul client.

40 Déclarations import java.io.*; import java.net.*; public class echo3 { public static void main(String args[]) { ServerSocket echoServer = null; String line; DataInputStream is; PrintStream os; Socket clientSocket = null; try { echoServer = new ServerSocket(9999);} catch (IOException e) {System.out.println(e); }

41 try { clientSocket = echoServer.accept(); is = new DataInputStream(clientSocket.getInputStream()); os = new PrintStream(clientSocket.getOutputStream()); while (true) { line = is.readLine(); os.println(line); } catch (IOException e) { System.out.println(e);} } }

42 Comment écrire un client ? Toujours 4 étapes Ouvrir un socket. Ouvrir un input et un output stream sur le socket. Lire et écrire sur le socket en fonction du protocole du serveur. Effacer Fermer Seule létape 3 change selon le serveur visé

43 Client SMTP (Simple Mail Transfer Protocol), import java.io.*; import java.net.*; public class smtpClient { public static void main(String[] args) { Socket smtpSocket = null; // le socket client DataOutputStream os = null; // output stream DataInputStream is = null; // input stream try { smtpSocket = new Socket("hostname", 25); os = new DataOutputStream(smtpSocket.getOutputStream()); is = new DataInputStream(smtpSocket.getInputStream()); } catch (UnknownHostException e) { System.err.println("Don't know about host: hostname"); } catch (IOException e) { System.err.println("Couldn't get I/O for the connection to: hostname"); }

44 Le protocole SMTP, RFC1822/3 if (smtpSocket != null && os != null && is != null) { try{os.writeBytes("HELO\n"); os.writeBytes("MAIL From: \n"); os.writeBytes("RCPT To: \n"); os.writeBytes("DATA\n"); os.writeBytes("From: \n"); os.writeBytes("Subject: Qui est là ?\n"); os.writeBytes("Vous suivez toujours ?\n"); // message os.writeBytes("\n.\n"); os.writeBytes("QUIT");

45 SMTP // attente de "Ok" du serveur SMTP, String responseLine; while ((responseLine = is.readLine()) != null) { System.out.println("Server: " + responseLine); if (responseLine.indexOf("Ok") != -1) {break;}} os.close(); is.close(); smtpSocket.close(); } catch (UnknownHostException e) { System.err.println("Trying to connect to unknown host: " + e); } catch (IOException){ System.err.println("IOException: " + e);} } } }.

46 TCP et Sockets La classe ServerSocket des constructeurs : par défaut, no de port associé, + taille de la liste de clients en attente + adresse... des accesseurs en lecture : no de port sur lequel le socket écoute, adresse à laquelle il est connecté (getPort, getInetAddress, …) des méthodes : accept pour accepter une communication avec un client, close...

47 TCP et Sockets La classe Socket : une batterie de constructeurs : par défaut, no de port + adresse / nom de machine et service distante, + no de port + adresse locale, créent un socket en mode Stream ou DataGramme des accesseurs en lecture : no de port et adresse à laquelle il est connecté, no de port et adresse à laquelle il est lié, input et output Stream associés (getPort, getInetAddress, getLocalPort, getLocalAddress, getInputStream, getOutputStream…) des méthodes : close...

48 Applications distribuées et parallèlisme La communication ne doit pas rester bloquée pour un client

49 Interaction Client/server : socket TCP Serveur (sexécutant sur lhôte) Client wait for incoming connection request connectionSocket = welcomeSocket.accept() create socket, port= x, for incoming request: welcomeSocket = ServerSocket() create socket, connect to hostid, port= x clientSocket = Socket() close connectionSocket read reply from clientSocket close clientSocket send request using clientSocket read request from connectionSocket write reply to connectionSocket TCP connection setup

50 Plusieurs Clients Utiliser des threads pour accepter plusieurs clients simultanément. Le serveur gère un thread par client

51 Plusieurs clients application Clientn Serveur Ouvrir connexion application Client1 application Client2 S1 S2 Sn

52 Quelques mots sur les Threads Un thread permet lexécution dun programme. Une application peut avoir de multiples threads qui s exécutent concurremment (Chaque thread a une priorité). Chaque thread a un nom. Plusieurs threads peuvent avoir le même. Le nom est généré si non spécifié. Il y a 2 façons de créer un nouveau thread dexécution. déclarer une sous classe de Thread et surcharger la méthode run. Une instance de la sous classe peut alors être allouée et démarrer. déclarer une classe qui implémente Runnable et donc la méthode run. Une instance de la classe peut être allouée, passée comme argument à la création dun thread et démarrée.

53 while (true) { accept a connection ; create a thread to deal with the client ; end while Scénario du Serveur Multithreadé

54 public class MultiServerThread extends Thread { private Socket socket = null; public MultiServerThread(Socket socket) { super("MultiServerThread"); this.socket = socket; } public void run() { try { PrintWriter out = new PrintWriter(socket.getOutputStream(), true); BufferedReader in = new BufferedReader( new InputStreamReader( socket.getInputStream())); …… } out.close(); in.close(); socket.close(); } catch (IOException e) { e.printStackTrace(); } } }

55 public class MultiServer { public static void main(String[] args) throws IOException { ServerSocket serverSocket = null; boolean listening = true; try { serverSocket = new ServerSocket(4444); } catch (IOException e) { System.err.println("Could not listen on port: 4444."); System.exit(-1); } while (listening) new MultiServerThread(serverSocket.accept()).start(); serverSocket.close(); } }

56 Programmation Réseaux Illustration : Les Sockets en Java PARTIE 2 Anne-Marie Déry À travailler seuls Concepts généraux Mise en œuvre Java

57 Besoins dune application Client-Serveur Similitudes avec un appel téléphonique via un standard 1. Trouver ladresse du serveur : trouver le no de téléphone de lentreprise 2. Demander un service spécifique : sadresser à un service ou une personne précise de lentreprise (no de poste) 3. Faire la requête 4. Obtenir une réponse Adresse dun serveur ? Identification dun service ?

58 Un peu de vocabulaire Client : entité qui fait l appel Sockets : moyen de communication entre ordinateurs Adresses IP : adresse dun ordinateur Serveur : entité qui prend en charge la requête Serveur de noms (DNS, LDAP) : correspondances entre noms logiques et adresses IP (Annuaire) Port : canal dédié à un service Protocole : langage utilisé par 2 ordinateurs pour communiquer entre eux

59 Adresse Internet et Port Adresse internet attribuée à chaque nœud du réseau série d octets dont la valeur dépend du type de réseau associée à un nom logique (Domain Name Server) Chaque hôte possède environ ports Port canal dédié à un service spécifique 80 pour le service http 25 pour le service SMTP TCP implique une file dattente par connexion UDP implique une file dattente unique pour le port

60 Exemples d adresses Internet ypcat hosts sous linux oscar.essi.fr oscar accueil.essi.fr accueil compta.essi.fr compta www-local.essi.fr www-local pcprofs.essi.fr pcprofs ada.essi.fr ada macserver.essi.fr macserver demo.essi.fr demo bibli.essi.fr bibli sfe-srv.essi.fr sfe-srv sfe bde.essi.fr bde niv1a.essi.fr niv1a dessi.essi.fr dessi jessica.essi.fr jessica print2

61 Exemples d adresses news-srv.essi.fr news-srv www-srv.essi.fr news dolphin.unice.fr essi2.essi.fr loghost essi2 Essi : I3S: serveurs : 25 Administration : 1 …….

62 Ports réservés TCP Serveur FTP : 21 Serveur Telnet : 23 Serveur SMTP : 25 UDP Agent SNMP : 161 Logger SNMP : 162 …. Serveur multi processusApplications transactionnelles 1 à 1024 services fondamentaux (administrateurs) (sous unix cf. le fichier /etc/services, ypcat services) 1025 à 5000 disponibles pour les utilisateurs

63 Programmation Socket Deux types de transports via les socket API: –Datagramme (non reliable) –Orienté flux doctets (reliable) Une porte à travers laquelle lapplication peut à la fois envoyer et recevoir des messages dune autre application socket Comment construire des applications client/server qui communiquent via les sockets

64 Programmation socket avec TCP Le Client doit contacter le serveur Le processus serveur doit être en train de sexécuter Le serveur doit avoir créé un socket qui devient le point dentrée des clients Le Client contacte le serveur en Créant un socket TCP client- localement Spécifiant ladresse et le no de port number du processus serveur Lorsque le client crée le socket: le client TCP établit une connexion avec le serveur TCP Lorsque le client le contacte le serveur TCP crée une nouvelle socket pour que le processus serveur communique avec le client –Permet de parler avec plusieurs clients

65 Applications distribuées et parallèlisme La communication ne doit pas rester bloquée pour un client

66 Interaction Client/server : socket TCP Serveur (sexécutant sur lhôte) Client wait for incoming connection request connectionSocket = welcomeSocket.accept() create socket, port= x, for incoming request: welcomeSocket = ServerSocket() create socket, connect to hostid, port= x clientSocket = Socket() close connectionSocket read reply from clientSocket close clientSocket send request using clientSocket read request from connectionSocket write reply to connectionSocket TCP connection setup

67 Plusieurs Clients Utiliser des threads pour accepter plusieurs clients simultanément. Le serveur gère un thread par client

68 Plusieurs clients application Clientn Serveur Ouvrir connexion application Client1 application Client2 S1 S2 Sn

69 Quelques mots sur les Threads Un thread permet lexécution dun programme. Une application peut avoir de multiples threads qui s exécutent concurremment (Chaque thread a une priorité). Chaque thread a un nom. Plusieurs threads peuvent avoir le même. Le nom est généré si non spécifié. Il y a 2 façons de créer un nouveau thread dexécution. déclarer une sous classe de Thread et surcharger la méthode run. Une instance de la sous classe peut alors être allouée et démarrer. déclarer une classe qui implémente Runnable et donc la méthode run. Une instance de la classe peut être allouée, passée comme argument à la création dun thread et démarrée.

70 while (true) { accept a connection ; create a thread to deal with the client ; end while Scénario du Serveur Multithreadé

71 public class MultiServerThread extends Thread { private Socket socket = null; public MultiServerThread(Socket socket) { super("MultiServerThread"); this.socket = socket; } public void run() { try { PrintWriter out = new PrintWriter(socket.getOutputStream(), true); BufferedReader in = new BufferedReader( new InputStreamReader( socket.getInputStream())); …… } out.close(); in.close(); socket.close(); } catch (IOException e) { e.printStackTrace(); } } }

72 public class MultiServer { public static void main(String[] args) throws IOException { ServerSocket serverSocket = null; boolean listening = true; try { serverSocket = new ServerSocket(4444); } catch (IOException e) { System.err.println("Could not listen on port: 4444."); System.exit(-1); } while (listening) new MultiServerThread(serverSocket.accept()).start(); serverSocket.close(); } }

73 Ce que RMI ne sait pas vraiment faire ? Communication asynchrone par messages Communication par diffusion

74 Communication par message : Envoi de datagrammes application opération Client Serveur req1 rep1 reqn repn

75 Programmation Socket avec UDP UDP: pas de connexion entre le client et le serveur Pas de lien privilégié entre le client et le serveur Lemetteur attache ladresse IP et le port pour le retour. Le serveur doit extraire ladresse IP et le port de lexpéditeur à partir du datagramme reçu application viewpoint UDP fournit un transfert non fiable de groupes doctets (datagrammes) entre un client et le serveur UDP: les données transmises peuvent être reçues dans le désordre ou perdues

76 Client/server socket interaction: UDP close clientSocket Serveur read reply from clientSocket create socket, clientSocket = DatagramSocket() Create, address ( hostid, port=x, send datagram request using clientSocket create socket, port= x, for incoming request: serverSocket = DatagramSocket() read request from serverSocket write reply to serverSocket specifying client host address, port umber Client

77 Scénario dun serveur Création d un paquet d entrée Attente de données en entrée Réception et Analyse des données en entrée Calcul Création dun paquet de sortie Préparation et Envoi de la réponse Fermer le socket d entrée Créer le socket d entrée

78 Scénario dun client Créer un paquet de sortie Préparer et Envoyer une requête Créer un paquet dentrée Attendre des données en entrée les recevoir et les traiter Fermer le socket d entrée Créer le socket d entrée

79 Datagrammes UDP et Sockets 2 classes : DatagramPacket et DatagramSocket Datagramme = un message indépendant envoyé sur le réseau arrivée, temps darrivée et contenu non garantis packages dimplémentation de communication via UDP de datagrammes

80 Exemple Un serveur de citation qui écoute un socket type datagram et envoie une citation si le client le demande Un client qui fait simplement des requêtes au serveur ATTENTION Plusieurs firewalls et routeurs sont configurés pour interdire le passage de paquets UDP

81 Une Application Client Serveur Le serveur reçoit en continu des paquets mode datagramme sur un socket un paquet reçu = une demande de citation dun client le serveur envoie en réponse un paquet qui contient une ligne "quote of the moment" Lapplication cliente envoie simplement un paquet datagramme au serveur indiquant quil souhaite recevoir une citation et attend en réponse un paquet du serveur.

82 La classe QuoteServer socket = new DatagramSocket(4445); Création dun DatagramSocket sur le port 4445 qui permet au serveur de communiquer avec tous ces clients try { in = new BufferedReader(new FileReader("one-liners.txt")); } catch (FileNotFoundException e) System.err.println("Couldn't open quote file. " + "Serving time instead."); } Le constructeur ouvre aussi un BufferedReader sur un fichier qui contient une liste de citations ( une citation par ligne)

83 suite contient une boucle qui tant quil y a des citations dans le fichier attend larrivée d un DatagramPacket correspondant à une requête client sur un DatagramSocket. Byte[] buf = new byte[256]; DatagramPacket packet = new DatagramPacket(buf, buf.length); socket.receive(packet); En réponse une citation est mise dans un DatagramPacket et envoyée sur le DatagramSocket au client demandeur. String dString = null; if (in == null) dString = new Date().toString(); else dString = getNextQuote(); buf = dString.getBytes(); InetAddress address = packet.getAddress(); int port = packet.getPort(); packet = new DatagramPacket(buf, buf.length, address, port); socket.send(packet);

84 Suite Adresse Internet + numéro de port (issus du DatagramPacket ) = identification du client pour que le serveur puisse lui répondre Larrivée du DatagramPacket implique une requête ->contenu du buffer inutile Le constructeur utilisé pour le DatagramPacket : un tableau doctets contenant le message et la taille du tableau + Ladresse Internet et un no de port. Lorsque le serveur a lu toutes les citations on ferme le socket de communication. socket.close();

85 La classe QuoteClient envoie une requête au QuoteServer, attend la réponse et affiche la réponse à lécran. Variables utilisées : int port; InetAddress address; DatagramSocket socket = null; DatagramPacket packet; byte[] sendBuf = new byte[256]; Le client a besoin pour s exécuter du nom de la machine sur laquelle tourne le serveur if (args.length != 1) { System.out.println("Usage: java QuoteClient "); return; }

86 La partie principale du main Création d un DatagramSocket DatagramSocket socket = new DatagramSocket(); Le constructeur lie le Socket à un port local libre Le programme envoie une requête au serveur byte[] buf = new byte[256]; InetAddress address = InetAddress.getByName(args[0]); DatagramPacket packet = new DatagramPacket(buf, buf.length, address, 4445); socket.send(packet); Ensuite le client récupère une réponse et laffiche

87 Classe DatagramSocket Des constructeurs : par défaut, + no port + Adresse Inet Des accesseurs en lecture : adresse à laquelle le socket est lié, est connecté, le no port auquel il est lié, connecté, taille du buffer reçu ou envoyé (getInetAddress, getLocalAddress, getPort, getLocalPort, getReceivedBufferSize, getSendBufferSize…) Des méthodes : pour se connecter à une adresse, pour se déconnecter, pour envoyer un paquet datagramme, pour un recevoir un paquet datagramme (connect, disconnect, send, receive)

88 Classe DatagramPacket Des constructeurs : buffer + longueur de buffer + adresse destination + port… Des accesseurs en lecture : adresse à laquelle le paquet est envoyé, le no port à laquelle le paquet est envoyé, la donnée transmise (getAddress, getPort, getData, getLength…)

89 Communication asynchrone par messages Communication par diffusion

90 Communication par message : Envoi de datagrammes application opération Client Serveur req1 rep1 reqn repn

91 Programmation Socket avec UDP UDP: pas de connexion entre le client et le serveur Pas de lien privilégié entre le client et le serveur Lemetteur attache ladresse IP et le port pour le retour. Le serveur doit extraire ladresse IP et le port de lexpéditeur à partir du datagramme reçu application viewpoint UDP fournit un transfert non fiable de groupes doctets (datagrammes) entre un client et le serveur UDP: les données transmises peuvent être reçues dans le désordre ou perdues

92 Client/server socket interaction: UDP close clientSocket Serveur read reply from clientSocket create socket, clientSocket = DatagramSocket() Create, address ( hostid, port=x, send datagram request using clientSocket create socket, port= x, for incoming request: serverSocket = DatagramSocket() read request from serverSocket write reply to serverSocket specifying client host address, port umber Client

93 Scénario dun serveur Création d un paquet d entrée Attente de données en entrée Réception et Analyse des données en entrée Calcul Création dun paquet de sortie Préparation et Envoi de la réponse Fermer le socket d entrée Créer le socket d entrée

94 Scénario dun client Créer un paquet de sortie Préparer et Envoyer une requête Créer un paquet dentrée Attendre des données en entrée les recevoir et les traiter Fermer le socket d entrée Créer le socket d entrée

95 Datagrammes UDP et Sockets 2 classes : DatagramPacket et DatagramSocket Datagramme = un message indépendant envoyé sur le réseau arrivée, temps darrivée et contenu non garantis packages dimplémentation de communication via UDP de datagrammes

96 Exemple Un serveur de citation qui écoute un socket type datagram et envoie une citation si le client le demande Un client qui fait simplement des requêtes au serveur ATTENTION Plusieurs firewalls et routeurs sont configurés pour interdire le passage de paquets UDP

97 Une Application Client Serveur Le serveur reçoit en continu des paquets mode datagramme sur un socket un paquet reçu = une demande de citation dun client le serveur envoie en réponse un paquet qui contient une ligne "quote of the moment" Lapplication cliente envoie simplement un paquet datagramme au serveur indiquant quil souhaite recevoir une citation et attend en réponse un paquet du serveur.

98 La classe QuoteServer socket = new DatagramSocket(4445); Création dun DatagramSocket sur le port 4445 qui permet au serveur de communiquer avec tous ces clients try { in = new BufferedReader(new FileReader("one-liners.txt")); } catch (FileNotFoundException e) System.err.println("Couldn't open quote file. " + "Serving time instead."); } Le constructeur ouvre aussi un BufferedReader sur un fichier qui contient une liste de citations ( une citation par ligne)

99 suite contient une boucle qui tant quil y a des citations dans le fichier attend larrivée d un DatagramPacket correspondant à une requête client sur un DatagramSocket. Byte[] buf = new byte[256]; DatagramPacket packet = new DatagramPacket(buf, buf.length); socket.receive(packet); En réponse une citation est mise dans un DatagramPacket et envoyée sur le DatagramSocket au client demandeur. String dString = null; if (in == null) dString = new Date().toString(); else dString = getNextQuote(); buf = dString.getBytes(); InetAddress address = packet.getAddress(); int port = packet.getPort(); packet = new DatagramPacket(buf, buf.length, address, port); socket.send(packet);

100 Suite Adresse Internet + numéro de port (issus du DatagramPacket ) = identification du client pour que le serveur puisse lui répondre Larrivée du DatagramPacket implique une requête ->contenu du buffer inutile Le constructeur utilisé pour le DatagramPacket : un tableau doctets contenant le message et la taille du tableau + Ladresse Internet et un no de port. Lorsque le serveur a lu toutes les citations on ferme le socket de communication. socket.close();

101 La classe QuoteClient envoie une requête au QuoteServer, attend la réponse et affiche la réponse à lécran. Variables utilisées : int port; InetAddress address; DatagramSocket socket = null; DatagramPacket packet; byte[] sendBuf = new byte[256]; Le client a besoin pour s exécuter du nom de la machine sur laquelle tourne le serveur if (args.length != 1) { System.out.println("Usage: java QuoteClient "); return; }

102 La partie principale du main Création d un DatagramSocket DatagramSocket socket = new DatagramSocket(); Le constructeur lie le Socket à un port local libre Le programme envoie une requête au serveur byte[] buf = new byte[256]; InetAddress address = InetAddress.getByName(args[0]); DatagramPacket packet = new DatagramPacket(buf, buf.length, address, 4445); socket.send(packet); Ensuite le client récupère une réponse et laffiche

103 Classe DatagramSocket Des constructeurs : par défaut, + no port + Adresse Inet Des accesseurs en lecture : adresse à laquelle le socket est lié, est connecté, le no port auquel il est lié, connecté, taille du buffer reçu ou envoyé (getInetAddress, getLocalAddress, getPort, getLocalPort, getReceivedBufferSize, getSendBufferSize…) Des méthodes : pour se connecter à une adresse, pour se déconnecter, pour envoyer un paquet datagramme, pour un recevoir un paquet datagramme (connect, disconnect, send, receive)

104 Classe DatagramPacket Des constructeurs : buffer + longueur de buffer + adresse destination + port… Des accesseurs en lecture : adresse à laquelle le paquet est envoyé, le no port à laquelle le paquet est envoyé, la donnée transmise (getAddress, getPort, getData, getLength…)

105 Programmation Réseaux Illustration : Les Sockets en Java PARTIE 3 Anne-Marie Déry À travailler seuls Concepts généraux Mise en œuvre Java

106 Communication par diffusion : Multicast Clientn Serveur Client1 Client2 Gr

107 Ouvrir un socket = demander à se Connecter Les clients demandent seulement à joindre un groupe

108 Exemple de multicast Un serveur de citation qui envoie une citation toutes les minutes à tous les clients qui écoutent (multicast)

109 Créer un paquet de sortie Préparer et Envoyer une donnée Scénario dun serveur Fermer le socket dentrée Créer le socket dentrée

110 Scénario dun client Création dun paquet dentrée Attente de données en entrée Réception et traitement des données en entrée Fermer le socket d entrée Créer le socket dentrée

111 Classe MulticastServer Des constructeurs : par défaut, port à utiliser Des accesseurs en lecture : adresse du groupe (getInterface…) Des méthodes : pour envoyer un paquet datagramme, pour joindre ou quitter un groupe (send, joinGroup, leaveGroup)

112 Multicast: MulticastSocket Type de socket utilisé côté client pour écouter des paquets que le serveur « broadcast » à plusieurs clients.. Une extension du QuoteServer : broadcast à intervalle régulier à tous ses clients

113 Cœur du serveur while (moreQuotes) { try { byte[] buf new byte[256]; // don't wait for request...just send a quote String dString = null; if (in == null) dString = new Date().toString(); else dString = getNextQuote(); buf = dString.getBytes(); InetAddress group = InetAddress.getByName(" "); DatagramPacket packet; packet = new DatagramPacket(buf, buf.length, group, 4446); socket.send(packet); try {sleep((long)Math.random() * FIVE_SECONDS); } catch (InterruptedException e) { } } catch (IOException e) { e.printStackTrace(); moreQuotes = false;} } socket.close();}

114 Différences principales Le DatagramPacket est construit à partir de de « ladresse de plusieurs clients » L adresse et le no de port sont câblés no de port 4446 (tout client doit avoir un MulticastSocket lié à ce no). Ladresse InetAddress " " correspond à un identificateur de groupe et non à une adresse Internet de la machine dun client Le DatagramPacket est destiné à tous les clients qui écoutent le port 4446 et qui sont membres du groupe " ".

115 Un nouveau Client Pour écouter le port 4446, le programme du client doit créer son MulticastSocket avec ce no. Pour être membre du groupe " " le client adresse la méthode joinGroup du MulticastSocket avec ladresse didentification du groupe. Le serveur utilise un DatagramSocket pour faire du broadcast à partir de données du client sur un MulticastSocket. Il aurait pu utiliser aussi un MulticastSocket. Le socket utilisé par le serveur pour envoyer le DatagramPacket nest pas important. Ce qui est important pour le broadcast est dadresser linformation contenue dans le DatagramPacket, et le socket utilisé par le client pour lécouter.

116 MulticastSocket socket = new MulticastSocket(4446); InetAddress group = InetAddress.getByName(" "); socket.joinGroup(group); DatagramPacket packet; for (int i = 0; i < 5; i++) { byte[] buf = new byte[256]; packet = new DatagramPacket(buf, buf.length); socket.receive(packet); String received = new String(packet.getData()); System.out.println("Quote of the Moment: " + received); } socket.leaveGroup(group); socket.close();

117 Synthèse ClientServeur TCPaSocketaServerSocket connectéwriteread readwrite UDPaDatagramSocketaDatagramSocket non connecté sendreceive receivesend MulticastaMulticastSocketaDatagramSocket/ aMulticastSocket receivesend I/O Stream aDatagramPacket

118 Quelques Informations utiles sur la sérialisation Java

119 Sérialisation-Desérialisation Enregistrer ou récupérer des objets dans un flux –Persistance –Transfert sur le réseau

120 Sérialisation Via la méthode writeObject() –Classe implémentant linterface OutputObject –Exemple : la classe OutputObjectStream –Sérialisation dun objet -> sérialisation de tous les objets contenus par cet objets Un objet est sauvé quune fois : cache pour les listes circulaires

121 Desérialisation Via la méthode readObject() –Classe implémentant linterface InputObject –Exemple : la classe InputObjectStream

122 Exception NotSerializableException Si la classe de lobjet sauvé –Nétend ni linterface Java Serializable –Ni linterface Java Externalizable

123 Interface Serializable Ne contient pas de méthode -> enregistrement et récupération de toutes les variables dinstances (pas de static) + informations sur sa classe (nom, version), type et nom des variables 2 classes compatibles peuvent être utilisées Objet récupéré = une copie de lobjet enregistré

124 Gestion de la sérialisation desérialisation Implémenter les méthodes private void writeObject(OutputObjectStream s) throws IOException private void readObject(OutputInputStream s) throws IOException defaultReadObject() et defaultWriteObject() méthodes par défaut Ajout dinformations à lenregistrement, choix de sérialisation Seulement pour les champs propres de la classe (héritage géré automatiquement)

125 Gestion complète de la sérialisation desérialisation : utiliser Externalizable Graphe dhéritage complet Implémenter les méthodes public void writeExternal(ObjectOutput o) throws IOException public void readExternal(ObjectInput o) throws IOException –ATTENTION PBM de SECURITE

126 Un peu plus de réflexivité Les ClassLoader ????

127 Classe ClassLoader ClassLoader est une classe abstraite. Un class loader est un objet responsable du chargement des classes Un nom de classe donné, il peut localiser ou générer les données qui constituent une définition de la classe. Chaque objet Class a une référence à un ClassLoader qui le définit. Applications implémentent des sous classes de ClassLoader afin détendre la façon de dynamiquement charger des classes par la VM. (utilisation de manager de sécurité, par exemple)

128 ClassLoader ? En UNIX la VM charge les classes à partir des chemins définis dans CLASSPATH. Certaines classes peuvent être obtenues à partir dautres sources, telles que le réseau ou construites par une application. La méthode defineClass convertit un tableau doctets en une instance de Class. Instances pouvant être créées grâce à newInstance Les méthodes et constructeurs créés par un class loader peuvent référencer dautres classes (loadClass du class loader de cette classe).

129 Exemple de chargement de classe Un class loader qui permet de charger des fichiers de classes via le réseau ClassLoader loader=new NetworkClassLoader(host,port); Object main= loader.loadClass("Main", true).newInstance(); …. NetworkClassLoader doit définir findClass et loadClassData pour charger et defineClass pour créer une instance de Class.

130 Utilité et utilisation RMI

131 Chargement dynamique des classes Problème de sécurité Le programme client télécharge du code sur le réseau Ce code pourrait contenir des virus ou effectuer des opérations non attendues !!! Utilisation d un gestionnaire de sécurité pour les applications de clients RMI Possibilité de créer des gestionnaires de sécurité personnalisés pour des applications spécifiques RMI fournit des gestionnaires de sécurité suffisants pour un usage classique

132 Pour ne plus déployer les classes du serveur chez le client Utilisation des chargeurs de classes qui téléchargent des classes depuis une URL Utilisation d un serveur Web qui fournit les classes Ce que ça change Bien entendu, les classes et interfaces de l objet distant ne changent pas Le code du serveur ne change pas le client et la façon de le démarrer sont modifiés Et lancer un serveur Web pour nos classes Chargement dynamique

133 Séparation des classes –Serveur (fichiers nécessaires a l'exécution du serveur) HelloWorldServer.class HelloWorldImpl.class HelloWorld.class HelloWorldImpl_Stub.class –Download (fichiers de classes à charger dans le programme client) HelloWorldImpl_Stub.class –Client (fichiers nécessaires au démarrage du client) HelloWorld.class HelloWorldClient.class Hello World : chargement dynamique

134 Mettre les classes Download dans le répertoire des documents Web du serveur Web, accessibles via une URL –le chargeur de classes ira chercher les classes à un emplacement de type }; Hello World : Démarrage du serveur Web

135 –Le programme Java client doit pouvoir se connecter aux ports de la base de registres RMI et des implémentations des objets de serveur, ainsi qu'au port du serveur Web –Fichier client.policy grant { permission java.net.SocketPermission "*: ", "connect,resolve"; permission java.net.SocketPermission "*:80", "connect"; }; Hello World : Politiques de sécurité

136 Le client intègre un gestionnaire de sécurité RMI pour les stubs téléchargés dynamiquement import java.rmi.*; import java.rmi.server.*; public class HelloWorldClient { public static void main(String[] args) { try { // Installe un gestionnaire de sécurité RMI System.setSecurityManager(new RMISecurityManager()); System.out.println("Recherche de l'objet serveur..."); HelloWorld hello = (HelloWorld)Naming.lookup("rmi://server/HelloWorld"); System.out.println("Invocation de la méthode sayHello..."); String result = hello.sayHello(); System.out.println("Affichage du résultat :"); System.out.println(result); } catch(Exception e) { e.printStackTrace(); } Hello World : gestionnaire de sécurité RMI

137 –1) Lancer la base de registres RMI (elle doit pouvoir accéder aux classes Download - CLASSPATH) > rmiregistry –2) Lancer le serveur Web servant les fichiers de classes Download –3) Lancer le serveur (les classes Server doivent être accessibles) > java HelloWorldServer Création de l'objet serveur... Référencement dans le RMIRegistry... Attente d'invocations - CTRL-C pour stopper Hello World : Démarrage coté serveur

138 –Le client doit pouvoir se connecter à des machines distantes pour la base de registres RMI, les objets de serveur ainsi que le serveur Web On doit lui fournir un fichier client.policy –Le client doit bien connaître l'emplacement des classes afin de pouvoir les télécharger On va le lui préciser lors du lancement > java -Djava.security.policy=client.policy -Djava.rmi.server.codebase=http://www.class-server.com:80/ HelloWorldClient Hello World : Démarrage coté client

139 Les méthodes dune classe ? 1.récupérer l objet Class que lon souhaite observer, 2.récupérer la liste des objets Method par getDeclaredMethods : méthodes définies dans cette classe (public, protected, package, et private) getMethods permet dobtenir aussi les informations concernant les méthodes héritées 3.A partir des objets méthodes il est facile de récupérer : les types de paramètres, les types dexception, et le type de largument retourné sous la forme dun type fondamental ou dun objet classe.

140 Exemple de programme Class cls = Class.forName("method1"); Method methlist[] = cls.getDeclaredMethods(); for (int i = 0; i < methlist.length; i++) { Method m = methlist[i]; System.out.println("name = " + m.getName()); System.out.println("decl class = " + m.getDeclaringClass()); Class pvec[] = m.getParameterTypes(); for (int j = 0; j < pvec.length; j++) System.out.println("param #" + j + " " + pvec[j]); Class evec[] = m.getExceptionTypes(); for (int j = 0; j < evec.length; j++) System.out.println("exc #" + j + " " + evec[j]); System.out.println("return type = " + m.getReturnType());}

141 Exemple dexécution name = f1 decl class = class method1 param #0 class java.lang.Object param #1 int exc #0 class java.lang.NullPointerException return type = int name = main decl class = class method1 param #0 class java.lang.String return type = void public class method1 { private int f1(Object p, int x) throws NullPointerException {……..} public static void main(String args[]) {….}

142 Programmation Réseaux Illustration : Les Sockets en Java PARTIE 4 Anne-Marie Déry À travailler seuls Concepts généraux Mise en œuvre Java

143 Définir un nouveau type de socket Pourquoi ? Préparer les données avant de les envoyer Reconstruire les données reçues Exemple Java RMI Sockets spécialisées (marshalling et unmarshalling) Exemple Images : Compression et Décompression Comment ? En spécialisant les classes de base

144 Comment Définir un nouveau type de Sockets La classe CompressionSocket et ses classes relatives 4 étapes Communication TCP Définir des E/S Spécifiques 1. Etendre java.io.FilterOutputStream pour créer un output stream pour ce type de Socket. Surcharge de méthodes si nécessaire. Le write doit compresser limage avant décrire 2. Etendre java.io.FilterInputStream Le read doit décompresser après avoir lu

145 Comment Définir un nouveau type de Sockets La classe CompressionSocket et ses classes relatives 4 étapes 3. Etendre java.net.Socket Implémenter les constructeurs appropriés et surcharger getInputStream, getOutputStream et close. 4. Etendre java.net.ServerSocket Implémenter le constructeur et surcharger accept pour créer un socket du bon type.

146 Un « nouveau » Package : java.nio Les principales nouveautés de cette API sont : Buffers : qui explicitent la notion de buffers – containers de données –Améliorent les problème de bufferisation liées aux E/S Charsets : qui associent des « décodeurs » et des « encodeurs » qui gèrent correctement les conversions chaines – octets –Éliminent les problème de accent (caractères Unicode / UTF),

147 Un « nouveau » Package : java.nio Channels : qui représentent des connexions entre entités avec de meilleures performances pour les opérations de lecture et décriture Selectors et selection keys : associées aux selectable channels définissent des E/S multiplexées non bloquantes –évitent les threads

148 Le package Channel SelectableChannel : canal qui peut être multiplexé DatagramChannel Un canal dédié aux communication UDP prises en charge par des sockets de type java.net.DatagramSocket ServerSocketChannel : Un canal dédié aux connexion TCP prises en charge par des sockets de type java.net.ServerSocket SocketChannel : Un canal dédié aux communication TCP prises en charge par des sockets de type java.net.Socket

149 Le package Channel Et aussi… Selector Un multiplexeur pour des SelectableChannel SelectionKey représentant un canal étiqueté pour le multiplexage Pipe Deux canaux pour construire un pipe unidirectionnel (| shell)

150 Les nouvelles sockets Ce package définit des classes de canaux qui sont utilisables par les classes de sockets : – DatagramSocket, –ServerSocket, et Socket de java.net package. –In all cases, un canal est créé par appel à une méthode statique open définie dans chaque classe. – La socket est créée par egget de bord.

151 Exemple : Serveur dheure import java.io.*; import java.net.*; import java.nio.*; import java.nio.channels.*; import java.nio.charset.*; import java.util.*; import java.util.regex.*;

152 Exemple : initialisations public class TimeServer { private static int PORT = 8013; private static int port = PORT; // Charset and encoder for US-ASCII private static Charset charset = Charset.forName("US- ASCII"); private static CharsetEncoder encoder = charset.newEncoder(); // Direct byte buffer for writing private static ByteBuffer dbuf = ByteBuffer.allocateDirect(1024);

153 Exemple : attente de connexion sur le port du service // Open and bind the server-socket channel private static ServerSocketChannel setup() throws IOException { ServerSocketChannel ssc = ServerSocketChannel.open(); InetSocketAddress isa = new InetSocketAddress(InetAddress.getLocalHost(), port); ssc.socket().bind(isa); return ssc; }

154 Exemple : communication avec un client // Service the next request to come in on the given channel // private static void serve(ServerSocketChannel ssc) throws IOException { SocketChannel sc = ssc.accept(); try { String now = new Date().toString(); sc.write(encoder.encode(CharBuffer.wrap(now + "\n"))); System.out.println(sc.socket().getInetAddress() + " : " + now); sc.close(); } finally { // Make sure we close the channel (and hence the socket) sc.close(); } }

155 Exemple : code du serveur public static void main(String[] args) throws IOException { if (args.length > 1) { System.err.println("Usage: java TimeServer [port]"); return; } // If the first argument is a string of digits then we take that // to be the port number if ((args.length == 1) && Pattern.matches("[0-9]+", args[0])) port = Integer.parseInt(args[0]); ServerSocketChannel ssc = setup(); for (;;) serve(ssc); } }

156 Conclusion Une large bibliothèque pour traiter les sockets et différents types de communication entre Clients et Serveurs dans Java Une extension naturelle par abstraction à lappel de méthodes à distance - Java RMI et une normalisation Corba avec lintégration dun ORB (cf aaplications réparties 2 nd semestre) et maintenant les EJB : Entreprise Java Beans

157 Retour sur RMI

158 Exemple CLIENT Essifun SERVEUR de Surnoms oter infrastructure Protocole dapplication ?

159 Communication client serveur CLIENT SERVEUR Préparation de la requête Envoi de la requête Attente du résultat …. Analyse du résultat reçu Connexion au serveur Attente de requêtes Analyse de la requête ….. Exécution …. Préparation de la réponse Envoi de la réponse

160 Exemple : annuaire des surnoms EssiFun SERVEUR de Surnoms enregistrer(« paul », « bug ») marshalling unmarshalling enregistrer(« paul », « bug ») = TRUE TRUE 1:Paul:bug ou ENR/nPaul/n/bug/n ou Objet Requête Seriablizable Différence entre un transport TCP et UDP pour le codage des données ?

161 Que peut on automatiser ? Au minimum, la phase de marshalling/unmarshalling (hétérogéneité des langages, des systèmes, etc) Selon les cas, le squelette du serveur les appels distants du client

162 Exemple : annuaire des surnoms et RMI enregistrer lister oter AnnuaireEssi listePersonnes Enregistrer(AnneMarie,AM) lister()

163 Exemple : annuaire des surnoms interface : partie visible de lobjet (enregistrer, oter, lister, …) implémentation : partie privée inaccessible depuis dautres objets (listePersonnes : un vecteur de Personne ou un tableau ou ….) interface = contrat entre lobjet et le monde extérieur (save impossible par exemple)

164 RMI public interface Surnoms extends java.rmi.Remote { public Boolean enregistrer(String nom, String surnom) throws java.rmi.RemoteException, ServeurSurnoms.surnoms.ExisteDeja ; …. }

165 Générateurs RMIC / Orbix... IDL Int. Java Spécifications des données Générateurs Fichiers générés Stubs Skeletons Proxy (mise en œuvre de la sérialisation et désérialisation…)

166 RMI Classes et Interfaces ClasseLocale SoucheSquelette ClasseDistante InterfaceDistante Remote Appel méthode m() Machine localeMachine distante InterfaceDistante

167 Interaction Client Enregistreur client serveur clientregistre Lookup : où est objetDistant ? stub Il est ici Envoyez le stub Le voici stubsquelette objet Distant result = objetDistant.m() result RMIRegistry + ClassLoader

168 Exemple : annuaire des surnoms XDR et RPC de SUN Protocole := CHOICE { enregistrerReq [0] SEQUENCE{PrintableString nom, PrintableString surnom} enregistrerRep[1] BOOLEAN, listerReq [2] NULL, listerRep [3] SET OF Personnes, ….} Programme surnoms { version { boolean enregistrer(nomSurnom) = 1; listePersonnes lister(void)=2 }= 1 } = ASN.1 et norme ISO

169 Générateurs de Stubs RPCGEN / MAVROS ASN1 XDR Librairie marshalling et unmarshalling squelettes du client et du serveur Spécifications des données Générateurs Types de données C Lisp Java Types de données C Fichiers générés

170 Les points communs des approches distribuées Adressage : à tout serveur (objet ou programme) doit être affecté une référence unique Transport : pour établir une communication entre 2 nœuds et transmettre une requête Marshalling : transformation de la requête pour passer sur le réseau

171 Points communs Protocol : transmission des requêtes entre exécutables Dispatching : gestion des threads Des services communs Services de nommage Interface repository.....

172 Restent à approfondir

173 Communication réseaux et Internet Couches de transport Différences entre UDP et TCP (Développement dun serveur multicast Ack/NoAck pour gérer la perte des paquets UDP) Dautres protocoles (RTP/RTCP) (introduction du routage multicast ou du tunelling) Principes du IP / protocole ICMP Service de nommage DNS Configuration services réseau

174 Introduction au Réseaux Locaux LANs Configuration carte réseau dune machine, Développement dun analyseur de trafic et standards IEEE 802 : IEEE et Ethernet Configuration dun Firewall : IPTables, Spécificités des Réseaux Locaux Heureusement Dino est là :-)

175 Quelques interrogations ? Comment choisir le bon middleware (intergiciel) ? Il y en a de plus en plus Corba, RMI, DCOM, DSA + CCM, J2EE + Web Services,.net.... Savoir les comparer Identifier les points communs Interopérabilité : XML une solution suffisante ? Heureusement Mireille est là

176 Programmation Réseaux Quavez-vous retenu ? Anne-Marie Déry À travailler seuls Concepts généraux Mise en œuvre Java

177 Questions préliminaires Différences entre les protocoles de transport TCP et UDP ? Utilisation des adresses Internet ? Utilisation des ports ? Programmation sockets : avantages et inconvénients

178 Lien Types de Socket - Couche de transport

179 Des entrées sorties : Pourquoi ?

180 Différences UDP -TCP

181 Différences Protocole dapplication marshalling

182 Quand doit on utiliser des threads ?

183 Différences Sockets Java - C

184 Apports du package nio

185 Protocole dapplication RMI

186 Avantages – Inconvénients RMI Socket

187 Différence déploiement statique - dynamique

188 Impact de la Sérialisation dobjets Java sur la communication

189 Réflexivité Java où et pourquoi ?


Télécharger ppt "Programmation Réseaux Illustration : Les Sockets en Java Anne-Marie Déry À travailler seuls Concepts généraux Mise en œuvre Java."

Présentations similaires


Annonces Google