La présentation est en train de télécharger. S'il vous plaît, attendez

La présentation est en train de télécharger. S'il vous plaît, attendez

M2-Internet 1 Application Layer Computer Networking: A Top Down Approach, 5 th edition. Jim Kurose, Keith Ross Addison-Wesley, April 2009. All material.

Présentations similaires


Présentation au sujet: "M2-Internet 1 Application Layer Computer Networking: A Top Down Approach, 5 th edition. Jim Kurose, Keith Ross Addison-Wesley, April 2009. All material."— Transcription de la présentation:

1 M2-Internet 1 Application Layer Computer Networking: A Top Down Approach, 5 th edition. Jim Kurose, Keith Ross Addison-Wesley, April 2009. All material copyright 1996-2009 J.F Kurose and K.W. Ross, All Rights Reserved H. Fauconnier

2 M2-Internet 2 H. Fauconnier

3 M2-Internet 3 Chapter 3: Application layer r 2.1 Principles of network applications r 2.2 Web and HTTP r 2.3 FTP r 2.4 Electronic Mail  SMTP, POP3, IMAP r 2.5 DNS r 2.6 P2P applications H. Fauconnier

4 M2-Internet 4 Chapter 3: Application Layer Our goals: r conceptual, implementation aspects of network application protocols  transport-layer service models  client-server paradigm  peer-to-peer paradigm r learn about protocols by examining popular application-level protocols  HTTP  FTP  SMTP / POP3 / IMAP  DNS r programming network applications  socket API H. Fauconnier

5 M2-Internet 5 Some network apps r e-mail r web r instant messaging r remote login r P2P file sharing r multi-user network games r streaming stored video clips r social networks r voice over IP r real-time video conferencing r grid computing H. Fauconnier

6 M2-Internet 6 Creating a network app write programs that  run on (different) end systems  communicate over network  e.g., web server software communicates with browser software No need to write software for network-core devices  Network-core devices do not run user applications  applications on end systems allows for rapid app development, propagation application transport network data link physical application transport network data link physical application transport network data link physical H. Fauconnier

7 M2-Internet 7 Chapter 3: Application layer r 2.1 Principles of network applications r 2.2 Web and HTTP r 2.3 FTP r 2.4 Electronic Mail  SMTP, POP3, IMAP r 2.5 DNS r 2.6 P2P applications H. Fauconnier

8 M2-Internet 8 Application architectures r Client-server  Including data centers / cloud computing r Peer-to-peer (P2P) r Hybrid of client-server and P2P H. Fauconnier

9 M2-Internet 9 Client-server architecture server:  always-on host  permanent IP address  server farms for scaling clients:  communicate with server  may be intermittently connected  may have dynamic IP addresses  do not communicate directly with each other client/server H. Fauconnier

10 Google Data Centers r Estimated cost of data center: $600M r Google spent $2.4B in 2007 on new data centers r Each data center uses 50-100 megawatts of power H. Fauconnier10 M2-Internet

11 11 Pure P2P architecture r no always-on server r arbitrary end systems directly communicate r peers are intermittently connected and change IP addresses Highly scalable but difficult to manage peer-peer H. Fauconnier

12 M2-Internet 12 Hybrid of client-server and P2P Skype  voice-over-IP P2P application  centralized server: finding address of remote party:  client-client connection: direct (not through server) Instant messaging  chatting between two users is P2P  centralized service: client presence detection/location user registers its IP address with central server when it comes online user contacts central server to find IP addresses of buddies H. Fauconnier

13 M2-Internet 13 Processes communicating Process: program running within a host. r within same host, two processes communicate using inter-process communication (defined by OS). r processes in different hosts communicate by exchanging messages Client process: process that initiates communication Server process: process that waits to be contacted rNote: applications with P2P architectures have client processes & server processes H. Fauconnier

14 M2-Internet 14 Sockets r process sends/receives messages to/from its socket r socket analogous to door  sending process shoves message out door  sending process relies on transport infrastructure on other side of door which brings message to socket at receiving process process TCP with buffers, variables socket host or server process TCP with buffers, variables socket host or server Internet controlled by OS controlled by app developer rAPI: (1) choice of transport protocol; (2) ability to fix a few parameters (lots more on this later) H. Fauconnier

15 M2-Internet 15 Addressing processes r to receive messages, process must have identifier r host device has unique 32-bit IP address  Exercise: use ipconfig from command prompt to get your IP address (Windows) r Q: does IP address of host on which process runs suffice for identifying the process?  A: No, many processes can be running on same r Identifier includes both IP address and port numbers associated with process on host. r Example port numbers:  HTTP server: 80  Mail server: 25 H. Fauconnier

16 M2-Internet 16 App-layer protocol defines r Types of messages exchanged,  e.g., request, response r Message syntax:  what fields in messages & how fields are delineated r Message semantics  meaning of information in fields r Rules for when and how processes send & respond to messages Public-domain protocols: r defined in RFCs r allows for interoperability r e.g., HTTP, SMTP, BitTorrent Proprietary protocols: r e.g., Skype, ppstream H. Fauconnier

17 M2-Internet 17 What transport service does an app need? Data loss r some apps (e.g., audio) can tolerate some loss r other apps (e.g., file transfer, telnet) require 100% reliable data transfer Timing r some apps (e.g., Internet telephony, interactive games) require low delay to be “effective” Throughput rsome apps (e.g., multimedia) require minimum amount of throughput to be “effective” rother apps (“elastic apps”) make use of whatever throughput they get Security  Encryption, data integrity, … H. Fauconnier

18 M2-Internet 18 Transport service requirements of common apps Application file transfer e-mail Web documents real-time audio/video stored audio/video interactive games instant messaging Data loss no loss loss-tolerant no loss Throughput elastic audio: 5kbps-1Mbps video:10kbps-5Mbps same as above few kbps up elastic Time Sensitive no yes, 100’s msec yes, few secs yes, 100’s msec yes and no H. Fauconnier

19 M2-Internet 19 Internet transport protocols services TCP service: r connection-oriented: setup required between client and server processes r reliable transport between sending and receiving process r flow control: sender won’t overwhelm receiver r congestion control: throttle sender when network overloaded r does not provide: timing, minimum throughput guarantees, security UDP service: r unreliable data transfer between sending and receiving process r does not provide: connection setup, reliability, flow control, congestion control, timing, throughput guarantee, or security Q: why bother? Why is there a UDP? H. Fauconnier

20 M2-Internet 20 Internet apps: application, transport protocols Application e-mail remote terminal access Web file transfer streaming multimedia Internet telephony Application layer protocol SMTP [RFC 2821] Telnet [RFC 854] HTTP [RFC 2616] FTP [RFC 959] HTTP (eg Youtube), RTP [RFC 1889] SIP, RTP, proprietary (e.g., Skype) Underlying transport protocol TCP TCP or UDP typically UDP H. Fauconnier

21 M2-Internet 21 Chapter 2: Application layer r 2.1 Principles of network applications r 2.2 Web and HTTP r 2.3 FTP r 2.4 Electronic Mail  SMTP, POP3, IMAP r 2.5 DNS r 2.6 P2P applications r 2.7 Socket programming with UDP r 2.8 Socket programming with TCP H. Fauconnier

22 M2-Internet 22 Web and HTTP First some jargon r Web page consists of objects r Object can be HTML file, JPEG image, Java applet, audio file,… r Web page consists of base HTML-file which includes several referenced objects r Each object is addressable by a URL r Example URL: www.someschool.edu/someDept/pic.gif host name path name H. Fauconnier

23 M2-Internet 23 HTTP overview HTTP: hypertext transfer protocol r Web’s application layer protocol r client/server model  client: browser that requests, receives, “displays” Web objects  server: Web server sends objects in response to requests PC running Explorer Server running Apache Web server Mac running Navigator HTTP request HTTP response H. Fauconnier

24 M2-Internet 24 HTTP overview (continued) Uses TCP: r client initiates TCP connection (creates socket) to server, port 80 r server accepts TCP connection from client r HTTP messages (application- layer protocol messages) exchanged between browser (HTTP client) and Web server (HTTP server) r TCP connection closed HTTP is “stateless” r server maintains no information about past client requests Protocols that maintain “state” are complex! rpast history (state) must be maintained rif server/client crashes, their views of “state” may be inconsistent, must be reconciled aside H. Fauconnier

25 M2-Internet 25 HTTP connections Nonpersistent HTTP r At most one object is sent over a TCP connection. Persistent HTTP r Multiple objects can be sent over single TCP connection between client and server. H. Fauconnier

26 M2-Internet 26 Nonpersistent HTTP Suppose user enters URL www.someSchool.edu/someDepartment/home.index 1a. HTTP client initiates TCP connection to HTTP server (process) at www.someSchool.edu on port 80 2. HTTP client sends HTTP request message (containing URL) into TCP connection socket. Message indicates that client wants object someDepartment/home.index 1b. HTTP server at host www.someSchool.edu waiting for TCP connection at port 80. “accepts” connection, notifying client 3. HTTP server receives request message, forms response message containing requested object, and sends message into its socket time (contains text, references to 10 jpeg images) H. Fauconnier

27 M2-Internet 27 Nonpersistent HTTP (cont.) 5. HTTP client receives response message containing html file, displays html. Parsing html file, finds 10 referenced jpeg objects 6. Steps 1-5 repeated for each of 10 jpeg objects 4. HTTP server closes TCP connection. time H. Fauconnier

28 M2-Internet 28 Non-Persistent HTTP: Response time Definition of RTT: time for a small packet to travel from client to server and back. Response time: r one RTT to initiate TCP connection r one RTT for HTTP request and first few bytes of HTTP response to return r file transmission time total = 2RTT+transmit time time to transmit file initiate TCP connection RTT request file RTT file received time H. Fauconnier

29 M2-Internet 29 Persistent HTTP Nonpersistent HTTP issues: r requires 2 RTTs per object r OS overhead for each TCP connection r browsers often open parallel TCP connections to fetch referenced objects Persistent HTTP r server leaves connection open after sending response r subsequent HTTP messages between same client/server sent over open connection r client sends requests as soon as it encounters a referenced object r as little as one RTT for all the referenced objects H. Fauconnier

30 M2-Internet 30 HTTP request message r two types of HTTP messages: request, response r HTTP request message:  ASCII (human-readable format) GET /somedir/page.html HTTP/1.1 Host: www.someschool.edu User-agent: Mozilla/4.0 Connection: close Accept-language:fr (extra carriage return, line feed) request line (GET, POST, HEAD commands) header lines Carriage return, line feed indicates end of message H. Fauconnier

31 M2-Internet 31 HTTP request message: general format H. Fauconnier

32 M2-Internet 32 Uploading form input Post method: r Web page often includes form input r Input is uploaded to server in entity body URL method: r Uses GET method r Input is uploaded in URL field of request line: www.somesite.com/animalsearch?monkeys&banana H. Fauconnier

33 M2-Internet 33 Method types HTTP/1.0 r GET r POST r HEAD  asks server to leave requested object out of response HTTP/1.1 r GET, POST, HEAD r PUT  uploads file in entity body to path specified in URL field r DELETE  deletes file specified in the URL field H. Fauconnier

34 M2-Internet 34 POST r dans une requête POST les données sont dans le corps du message r les données définissent des variables qui seront utilisées par le CGI r l'url requise est normalement un programme r la réponse HTTP est normalement la sortie d'un programme H. Fauconnier

35 M2-Internet 35 HTTP response message HTTP/1.1 200 OK Connection close Date: Thu, 06 Aug 1998 12:00:15 GMT Server: Apache/1.3.0 (Unix) Last-Modified: Mon, 22 Jun 1998 …... Content-Length: 6821 Content-Type: text/html data data data data data... status line (protocol status code status phrase) header lines data, e.g., requested HTML file H. Fauconnier

36 M2-Internet 36 HTTP response status codes 200 OK  request succeeded, requested object later in this message 301 Moved Permanently  requested object moved, new location specified later in this message (Location:) 400 Bad Request  request message not understood by server 404 Not Found  requested document not found on this server 505 HTTP Version Not Supported In first line in server->client response message. A few sample codes: H. Fauconnier

37 M2-Internet 37 Trying out HTTP (client side) for yourself 1. Telnet to your favorite Web server: Opens TCP connection to port 80 (default HTTP server port) at cis.poly.edu. Anything typed in sent to port 80 at cis.poly.edu telnet cis.poly.edu 80 2. Type in a GET HTTP request: GET /~ross/ HTTP/1.1 Host: cis.poly.edu By typing this in (hit carriage return twice), you send this minimal (but complete) GET request to HTTP server 3. Look at response message sent by HTTP server! H. Fauconnier

38 M2-Internet 38 Méthodes http r GET  C'est la méthode la plus courante pour demander une ressource. Une requête GET est sans effet sur la ressource, il doit être possible de répéter la requête sans effet. r HEAD  Cette méthode ne demande que des informations sur la ressource, sans demander la ressource elle-même. r POST  Cette méthode doit être utilisée lorsqu'une requête modifie la ressource. r OPTIONS  Cette méthode permet d'obtenir les options de communication d'une ressource ou du serveur en général. r CONNECT  Cette méthode permet d'utiliser un proxy comme un tunnel de communication. r TRACE  Cette méthode demande au serveur de retourner ce qu'il a reçu, dans le but de tester et effectuer un diagnostic sur la connexion. r PUT  Cette méthode permet d'ajouter une ressource sur le serveur. r DELETE  Cette méthode permet de supprimer une ressource du serveur. H. Fauconnier

39 M2-Internet 39 entêtes r Host  Permet de préciser le site Web concerné par la requête, ce qui est nécessaire pour un serveur hébergeant plusieurs sites à la même adresse IP (name based virtual host, hôte virtuel basé sur le nom). (Obligatoire) r Referer  Indique l'URI du document qui a donné un lien sur la ressource demandée. Cet en- tête permet aux webmasters d'observer d'où viennent les visiteurs. r User-Agent  Indique le logiciel utilisé pour se connecter. Il s'agit généralement d'un navigateur Web ou d'un robot d'indexation. r Connection  connection persistante ou non r Accept  Cet en-tête liste les types MIME de contenu acceptés par le client. Le caractère étoile * peut servir à spécifier tous les types / sous-types. r Accept-Charset  Spécifie les encodages de caractères acceptés. r Accept-Language  Spécifie les langues acceptés. H. Fauconnier

40 M2-Internet 40 Réponses r Date  Moment auquel le message est généré. r Server  Indique quel modèle de serveur HTTP répond à la requête. r Content-Length  Indique la taille en octets de la ressource. r Content-Type  Indique le type MIME de la ressource. r Expires  Indique le moment après lequel la ressource devrait être considérée obsolète ; permet aux navigateurs Web de déterminer jusqu'à quand garder la ressource en mémoire cache. r Last-Modified  Indique la date de dernière modification de la ressource demandée. H. Fauconnier

41 M2-Internet 41 User-server state: cookies Many major Web sites use cookies Four components: 1) cookie header line of HTTP response message 2) cookie header line in HTTP request message 3) cookie file kept on user’s host, managed by user’s browser 4) back-end database at Web site Example:  Susan access Internet always from same PC  She visits a specific e- commerce site for first time  When initial HTTP requests arrives at site, site creates a unique ID and creates an entry in backend database for ID H. Fauconnier

42 M2-Internet 42 Cookies: keeping “state” (cont.) client server usual http request msg usual http response + Set-cookie: 1678 usual http request msg cookie: 1678 usual http response msg usual http request msg cookie: 1678 usual http response msg cookie- specific action cookie- spectific action server creates ID 1678 for user entry in backend database access Cookie file amazon: 1678 ebay: 8734 Cookie file ebay: 8734 Cookie file amazon: 1678 ebay: 8734 one week later: H. Fauconnier

43 M2-Internet 43 Cookies (continued) What cookies can bring: r authorization r shopping carts r recommendations r user session state (Web e-mail) Cookies and privacy: rcookies permit sites to learn a lot about you ryou may supply name and e- mail to sites rsearch engines use redirection & cookies to learn yet more radvertising companies obtain info across sites aside H. Fauconnier

44 M2-Internet 44 Web caches (proxy server) r user sets browser: Web accesses via cache r browser sends all HTTP requests to cache  object in cache: cache returns object  else cache requests object from origin server, then returns object to client Goal: satisfy client request without involving origin server client Proxy server client HTTP request HTTP response HTTP request HTTP response origin server origin server H. Fauconnier

45 M2-Internet 45 More about Web caching r Cache acts as both client and server r Typically cache is installed by ISP (university, company, residential ISP) Why Web caching? r Reduce response time for client request. r Reduce traffic on an institution’s access link. r Internet dense with caches enables “poor” content providers to effectively deliver content (but so does P2P file sharing) H. Fauconnier

46 M2-Internet 46 Caching example Assumptions r average object size = 100,000 bits r avg. request rate from institution’s browsers to origin servers = 15/sec r delay from institutional router to any origin server and back to router = 2 sec Consequences r utilization on LAN = 15% r utilization on access link = 100% r total delay = Internet delay + access delay + LAN delay = 2 sec + minutes + milliseconds origin servers public Internet institutional network 10 Mbps LAN 1.5 Mbps access link institutional cache H. Fauconnier

47 M2-Internet 47 Caching example (cont) Possible solution r increase bandwidth of access link to, say, 10 Mbps Consequences r utilization on LAN = 15% r utilization on access link = 15% r Total delay = Internet delay + access delay + LAN delay = 2 sec + msecs + msecs r often a costly upgrade origin servers public Internet institutional network 10 Mbps LAN 10 Mbps access link institutional cache H. Fauconnier

48 M2-Internet 48 Caching example (cont) Install cache r suppose hit rate is.4 Consequence r 40% requests will be satisfied almost immediately r 60% requests satisfied by origin server r utilization of access link reduced to 60%, resulting in negligible delays (say 10 msec) r total avg delay = Internet delay + access delay + LAN delay =.6*(2.01) secs + milliseconds < 1.4 secs origin servers public Internet institutional network 10 Mbps LAN 1.5 Mbps access link institutional cache H. Fauconnier

49 M2-Internet 49 Conditional GET r Goal: don’t send object if cache has up-to-date cached version r cache: specify date of cached copy in HTTP request If-modified-since: r server: response contains no object if cached copy is up- to-date: HTTP/1.0 304 Not Modified cache server HTTP request msg If-modified-since: HTTP response HTTP/1.0 304 Not Modified object not modified HTTP request msg If-modified-since: HTTP response HTTP/1.0 200 OK object modified H. Fauconnier

50 Préliminaire r http est un protocole qui définit des formats pour les interactions entre serveurs et clients r Du côté du client: les navigateurs r Du côté serveur: des serveurs http  Apache (httpd), IIS (internet information service) microsoft, Zeux etc…  Mais aussi des serveurs d'application comme glassfish ou tomcat M2-Internet 50 H. Fauconnier

51 apache r Pour pouvoir tester les exemples on utilisera apache  logiciel libre disponible sur la plupart des plateformes  Le serveur le plus fréquent  Prise en charge de nombreux modules, (perl php, python, ruby…) cgi  Serveurs virtuels M2-Internet 1-51 H. Fauconnier

52 Principes… r Le serveur reçoit des requêtes http et renvoie des pages html dans des réponses http  Interpréter les requêtes  Lancer sur le côté serveur les applications concernées  Récupérer les résultats et les transmettre au client r Configuration: httpd.conf (en général dans /etc (et par catalogue.htaccess) M2-Internet 1-52 H. Fauconnier

53 Principes r Correspondance entre url et fichiers locaux  DocumentRoot: DocumentRoot: /var/www/html http://www.exemple.com/un/deux.html sera /var/www/html/un/deux.html  Pages des uitlisateurs UserDir: www http://www.example.com/~user/file.html sera /home/user/public_html/file.html  En plus des alias et des redirections M2-Internet 1-53 H. Fauconnier

54 Pour voir… r Sur cette machine:  /private/etc/apache2/httpd.conf /private/etc/apache2/httpd.conf  UserDir: Site M2-Internet 1-54 H. Fauconnier

55 M2-Internet 55 CGI r Common Gateway Interface r exécuter du code du côté serveur r Passage de paramètre par la méthode POST ou la méthode GET r Variables d'environnement H. Fauconnier


Télécharger ppt "M2-Internet 1 Application Layer Computer Networking: A Top Down Approach, 5 th edition. Jim Kurose, Keith Ross Addison-Wesley, April 2009. All material."

Présentations similaires


Annonces Google