La présentation est en train de télécharger. S'il vous plaît, attendez

La présentation est en train de télécharger. S'il vous plaît, attendez

Chapitre 2 Electrocinétique I Mouvement dune particule chargée dans un champ électrique II Le courant électrique IIa Courant continu Condensateur Bobine.

Présentations similaires


Présentation au sujet: "Chapitre 2 Electrocinétique I Mouvement dune particule chargée dans un champ électrique II Le courant électrique IIa Courant continu Condensateur Bobine."— Transcription de la présentation:

1 Chapitre 2 Electrocinétique I Mouvement dune particule chargée dans un champ électrique II Le courant électrique IIa Courant continu Condensateur Bobine IIb Courant alternatif III Les filtres

2 Electrocinétique I Etude du mouvement des particules dans un champ électrique +5V V q la force dépend du champ appliqué et aura un signe + ou – selon q La concavité sera dirigée dans le sens de si q>0 et dans le sens opposée si q<0 y x O Trajectoire de la particule q (>0) soumise à un champ électrostatique uniforme O est la position initiale de la particule q chargée + est la vitesse initiale de la particule qui fait un angle avec laxe des x

3 Une particule chargée arrivant perpendiculairement dans un condensateur plan sera soumise à un champ parallèle qui produira une accélération de la particule Electrocinétique I Etude du mouvement des particules dans un champ électrique Accélération de particules chargée + - q>0

4 Electrocinétique I Etude du mouvement des particules dans un champ électrique Déviation de particules chargée Une particule chargée arrivant parallèlement dans un condensateur plan sera soumise à un champ perpendiculaire qui produira une déviation du trajet de la particule

5 Déviation axe x Déviation axe y Accélération Principe de loscilloscope

6 II Le courant électrique Définition: On appelle courant électrique tout mouvement de charges électriques. Courant continu: tension et intensité sont constantes Courant alternatif: les valeurs changent au cours du temps cycliquement Le courant électrique correspond à un déplacement de particules chargées dans un milieu matériel Électrons de conduction dans les métaux, Ions dans les électrolytes… Par convention, le sens réel du courant est le sens de déplacement des charges + Dans un conducteur métallique le courant électrique correspond à un déplacement délectrons Le déplacement des charges (électrons) est donc de sens opposé à celui du courant

7 Notion dintensité du courant et de densité de courant Ampère, 1775 On mesure lintensité du courant (i) par un ampèremètre. La quantité de charge électrique ou le débit de charge qui traverse une surface par unité de temps s q>0 i>0 Lunité est lampère (A) 1 ampère = Coulomb/sec Mesure la densité de courant (j) qui correspond à lintensité de courant par unité de surface Lunité est lampère/m 2 (A/m 2 ) = Coulomb/sec/m 2

8 q>0 i>0 n= nombre de porteur de charges par unité de volume (nb délectrons ou nb dions) q= la charge en coulomb La charge totale qui va traversé la surface S est contenu dans cylindre de section S et de hauteur vdt. vdt corresponds à la distance parcourut par les charges pendant le laps de temps dt, Svdt correspond donc à un volume. La quantité de charge totale dq contenue dans ce petit volume est donc égale à: alors comme alors donc comme s

9 En fait v est un vecteur. Il corresponds à la vitesse des charges. De ce fait J est un vecteur de densité de courant volumique. Ce qui fait rentrer la notion de direction des charges liée à la vitesse des charges Si on considère une surface élémentaire dS avec une orientation Alors lintensité de courant qui traverse dS correspond à Dans des membranes qui laissent passer plusieurs types dions par exemple alors j seras fonctions des différents types dions mobilisés selon leurs vitesses de mobilisation

10 La loi dOhm Ohm 1789 Notion de conductivité Certains matériaux conduisent le courant. Au repos, les électrons sont en perpétuelle agitation dans les fils conducteurs de façon aléatoire liée à lagitation thermique. Pour créer un courant il faut appliquer une force sur les électrons. On établit alors un champ électrique constant qui donnera un sens avec une vitesse constante et donc un courant constant sappliquera aux électrons dans le sens contraire au champs électrostatique. Sens contraire car q=-e Loi dOhm Locale Ou représente la conductivité spécifique pour un matériau qui sexprime en Siemens/m ( S /m). Ce qui signifie que pour un champ électrique donné, la densité de courant ou le flux de courant est fonction de, la conductivité. Plus la conductivité est grande, + le flux de courant est grand et donc plus le matériau laisse passer le courant

11 Isolant Conducteur Tissus +/- conducteur

12 Notion disolant Matériaux dont la conductivité est faible Notion de semi-conducteur Nobéissent pas à la loi dOhm. Cest-à-dire la relation nest pas linéaire entre et tant que est faible, ne passe pas, dès que dépasse un seuil alors le courant passe Notion de résistance dun conducteur cylindrique La résistance ou S représente la section transversale Soit un matériau de longueur et de conductivité, est sa résistance. Elle se mesure en ohm

13 Notion de résistivité Cest linverse de la conductivité Et donc on peut écrire la résistance sous la forme Plus un matériau est résistif plus la résistance électrique du câble est grande Plus le câble est long plus sa résistance est grande Plus la section du câble est petite plus sa résistance est grande + un tuyau est long, + sa section est petite, + il soppose à lécoulement de leau.

14 Notion de conductance Cest linverse de la résistance Lunité de la conductance est le siemens (S) Notion de tension Une tension est mesurée entre 2 points dun circuit et correspond à une différence de potentiel entre les deux bornes tension aux bornes de AB les potentiels aux bornes de A et de B Notion dadditivité des tensions Les tensions sadditionnent (Loi de Charles) voir Notion de masse Les potentiels peuvent être mesurés entre une borne A et la masse, souvent la terre

15 Notion de puissance ou Effet Joule, dissipation dénergie C' est la manifestation thermique de la résistance électrique. Il se produit lors du passage d'un courant électrique dans tous conducteurs, à l'exception des supraconducteurs qui nécessitent cependant des conditions particulières. La puissance sexprime en Volt Ampère soit en Watts

16 II a Les courants continus Pour obtenir un courant continu il est nécessaire de disposer dun générateur de courant continu Un générateur est un dispositif qui présente une difference de potentiel (ddp) à ses bornes (pile par ex) Cette ddp constitue la force électromotrice du générateur Le générateur alimente un récepteur (moteur par ex) qui consomme de lénergie (force contre électromotrice)

17 Circuit en série R1R2R3R4 A M N O B

18 Circuit en série R1R2R3R4 A M N O B Circuit en parallèle R1 R2 R3 R4 A B I I I1 I2 I3 I4

19 Pompe N+K+ et Ca++ Transport actif Ext Int R1 R2 R3 R4 A B I I1 I2 I3 I4 R1 R2 R3 R4 A B I I1 I2 I3 I4 Equivalent électrique dune membrane

20 Exemple de circuit à courant continu E R I=E/R + -

21 Notion de condensateur Rappel: un condensateur est composé de 2 surfaces conductrices appelées armatures qui sentourent ou se font face et qui sont séparées par un isolant. Les armatures portent des charges +q et –q égales en valeur. Il est dit parfait si aucune charge ne traverse lisolant C= capacité qui sexprime en Farad (F) dans le SI x x A B ou représente la charge dun condensateur La charge dun condensateur est donc proportionnelle à la tension entre ces bornes Lintensité dun courant électrique = La capacité électrique d'un condensateur se détermine en fonction de la géométrie des armatures et de la nature du ou des isolants avec S : surface des armatures en regard, d distance entre les armatures et ε la permittivité diélectrique

22 La bouteille de Leyde G: Générateur, A Aluminium, D verre A B C i (t)

23 R Charge du condensateur Augmentation de dq U=RI+Q/C +-+- U R A B C r Décharge du condensateur Diminution de dq +-+- U R A B C r Condensateur au repos +-+- U A B C r +-+- Rappel C=Q/U

24 x x A B Charge Accumulation x x A B Décharge t Régime transitoire Régime stationnaire Charge Décharge La résistance est fonction du débit de courant et de la capacité et de la fréquence du signal Homogeneise cond et bob Lintensité dun courant électrique = q q

25 Notion de constante de temps Cest la durée pendant laquelle un circuit sadapte à une modification extérieure Pour la charge La constante de temps correspond au temps mis pour que la charge maximale atteigne 63% de sa valeur maximum 100% UC 63% Pour la décharge La constante de temps correspond au temps mis pour atteindre 37% de sa valeur initiale de décharge t t Lénergie emmagasinée +-+- U A B C r +-+- q

26 Linductance Lénergie emmagasinée La bobine Cest un enroulement de fils, siège de phénomènes dinduction. Henry, (H) en SI i U Signe + en convention récepteur Une bobine a 2 effets 1 résistif lié au fil de Cu: 1 lié aux variations dintensité cest linductance Ce qui signifie que dans une bobine idéale i ne varie pas et donc =0 et donc U=0 La bobine se comporte comme un coupe circuit

27 i U Une bobine a 2 effets 1 résistif lié au fil de Cu: 1 lié aux variations dintensité cest linductance et donc La bobine réelle

28 Inductance et champ magnétique Boussole - Une aiguille aimantée soriente vers le pôle nord - Le vecteur de champs cest la direction pôle sud vers pôle nord - Lintensité du champ magnétique + le champ est intense + laiguille sorient rapidement - elle oscille longtemps La mesure est le Tesla (T) dans le SI elle se mesure avec un Teslomètre Champ magnétique terrestre T IRM: 1.5, 3, 7 T Aimant Limaille de fer Orientation du champ magnétique 2 pôles de même nature se repoussent 2 pôles de nature opposés sattirent

29 Champ magnétique créé par un courant Soit une boussole à côté dun fil électrique placé dans le sens Sud Nord Si on passe un courant dans le fil électrique la boussole sorient perpendiculairement au fil électrique i=0 i NSNS NSNS Fil électrique Champ magnétique Fil électrique Champ magnétique Ceci amène à la règle du bonhomme dAmpère Fil perpendiculaire au plan de la diapo

30 Règle du bonhomme dAmpère Si un observateur, placé le long dun fil électrique et de telle manière que le courant entre par ses pieds et sort par sa tête. Si il regarde dans la direction dun point M, il voit en M un champ magnétique qui va de sa droite vers sa gauche. La bobine i Nord Sud Le Champ magnétique se note

31 Si on ajoute plusieurs bobine pour faire un solénoïde Alors le champ magnétique est quasiment parallèle à laxe du solénoïde Nord Sud Dans le vide, lintensité du champ magnétique est proportionnelle à lintensité du courant et au nombre de spires

32 Principe de superposition On utilise 2 solénoïdes orthogonaux le solénoïde 2 étant dans le 1 On crée donc un champ B1 selon le bonhomme dAmpère lié au solénoïde 1 Et un champ B2 lié au solénoïde 2 Le champ résultant est donc la somme des 2 champs créés par les 2 solénoïdes B1 B2

33 Si on soumet un faisceau délectron à un champ magnétique on constate que les particules chargées interagissent avec le champ magnétique. - Si la vitesse initiale des électrons est parallèle au champ magnétique la trajectoire nest pas affectée. - Si la vitesse initiale est perpendiculaire la trajectoire des électrons est circulaire. La force est orthogonale à la vitesse. - Si lintensité du champ magnétique est doublé, le rayon du cercle est divisé par 2 - Si la vitesse des électrons est doublée, le rayon du cercle est doublé Mouvement des particules dans un champ magnétique Force de Lorentz (1853)

34 Loi de Lorentz Une particule de charge q, animée dune vitesse dans un champ magnétique, subit une force appelée force de Lorentz Donc la force dépend du signe de q qui donnera le sens de rotation, de la vitesse initiale et de lintensité du champ magnétique Une particule, arrive dans un champ magnétique avec une vitesse initiale que lon peut décomposer en une vitesse // et une vitesse orthogonale. La trajectoire résultante sera hélicoïdale¨. Le sens denroulement dépendra du signe de B, du signe de q et de la vitesse initiale de la particule

35 La bobine Elle retarde létablissement du courant i U soit Ainsi la conductance est fonction de linductance, du courant i et de la fréquence En fait tout se passe comme si le champ magnétique sopposait au courant électrique A basse fréquence quand tend vers 0 Z tend vers 0 et donc la bobine est équivalente à un fil A haute fréquence tend vers linfini limpédance Z tend vers linfini et donc le circuit se comporte comme un circuit ouvert avec

36 En régime sinusoidal La loi dOhm devient Limpédance dune résistance Limpédance dun condensateur Ou C est la capacité, J le déphasage et la fréquence Limpédance dune bobine IIb Les courants alternatifs

37 Notion de Filtre Filtre passe bas En Vin on crée une step fonction Avec la capacité celle-ci va progressivement se charger et le courant en Vout va accuser une constante de temps. Si en Vin on crée une sinusoïde O/F/O/F à haute fréquence ( ) élevé (vers linfini) alors son impédance Z tend vers 0 et dans le circuit de la capacité tend vers linfini ( très peu résistif, équivalent à un fil) et donc Vout tend vers 0 (court circuit?) Si en Vin on crée une sinusoïde à basse fréquence ( ) bas (vers 0) alors limpédance tend vers linfini très résistif dans le circuit de la capacité tend vers 0 on a donc un circuit ouvert et Vout tend vers Vin Le condensateur ne peut se charger et Vout = zero On retrouve cela sur la formule ou une augmentation de w induit un Z=0 Les filtres Régime sinusoidal

38 Notion de Filtre Filtre passe bas En Vin on crée une step fonction Avec la capacité celle-ci va progressivement se charger et le courant en Vout va accuser une constante de temps. Si en Vin on crée une sinusoïde O/F/O/F à haute fréquence ( ) élevé (vers linfini) alors son impédance Z tend vers 0 et dans le circuit de la capacité tend vers linfini ( très peu résistif, équivalent à un fil) et donc Vout tend vers 0 Les Filtres Régime sinusoidal

39 Notion de Filtre Filtre passe bas En Vin on crée une step fonction Avec la capacité celle-ci va progressivement se charger et le courant en Vout va accuser une constante de temps. Si en Vin on crée une sinusoïde à basse fréquence ( ) bas (vers 0) alors limpédance tend vers linfini très résistif dans le circuit de la capacité tend vers 0 on a donc un circuit ouvert et Vout tend vers Vin Régime sinusoidal X

40 Notion de Filtre Filtre passe haut Régime sinusoidal Si en Vin on crée une sinusoïde O/F/O/F à haute fréquence élevé (vers linfini) alors son impédance Z tend vers 0 et dans le circuit de la capacité tend vers linfini (très peu résistif, équivalent à un fil) et donc Vout tend vers Vin Si en Vin on crée une sinusoïde à basse fréquence bas (vers 0) alors limpédance tend vers linfini très résistif dans le circuit de la capacité tend vers 0, le courant ne passe pas au travers du condensateur on a donc un circuit ouvert et Vout tend vers 0 puisque déconnecté de lentrée Le condensateur ne peut se charger et Vout = zero On retrouve cela sur la formule ou une augmentation de w induit un Z=0

41 Notion de Filtre Filtre passe haut Régime sinusoidal Si en Vin on crée une sinusoïde O/F/O/F à haute fréquence élevé (vers linfini) alors son impédance Z tend vers 0 et dans le circuit de la capacité tend vers linfini (très peu résistif, équivalent à un fil) et donc Vout tend vers Vin

42 Notion de Filtre Filtre passe haut Régime sinusoidal Si en Vin on crée une sinusoïde à basse fréquence bas (vers 0) alors limpédance tend vers linfini très résistif dans le circuit de la capacité tend vers 0, le courant ne passe pas au travers du condensateur on a donc un circuit ouvert et Vout tend vers 0 puisque déconnecté de lentrée X

43 TC = 1/(2f). Relation entre constante de temps et fréquence de coupure des filtres

44 La fréquence de coupure dun filtre Représente la fréquence de coupure des filtres Représente le gain en décibel du signal

45 Le principe de lutilisation des filtres Le principe est datténuer les fréquences indésirables Fréquence de coupure et gain Fréquence de coupure est Rc est un temps 1/RC est donc une fréquence Atténuation en dB A 2 = variable mesurable A 1 = variable de référence de la variable mesurée

46

47 Filtre 50Hz

48 Sans filtre

49 Filtre passe haut 15 Hz 3dB

50 Filtre passe bas 15Hz

51 Sans filtre Passe haut 10Hz Atténuation des fréquences basses Passe bas 15Hz Atténuation des fréquences élevées

52 Vin Vout Les filtres de second ordre, Circuit RLC i U Vin Vout A basse fréquence le condensateur est équivalent à un circuit ouvert et la bobine à un fil i U i=0 Il ny a pas de courant de sortie donc pas de courant dans la résistance donc Vin = Vout Ce filtre laisse passer les basses fréquences A haute fréquence le condensateur est équivalent à un fil et la bobine à un circuit ouvert i U Vout étant prise aux bornes dun fil est =0 Ce filtre ne laisse pas passer les hautes fréquences


Télécharger ppt "Chapitre 2 Electrocinétique I Mouvement dune particule chargée dans un champ électrique II Le courant électrique IIa Courant continu Condensateur Bobine."

Présentations similaires


Annonces Google