La présentation est en train de télécharger. S'il vous plaît, attendez

La présentation est en train de télécharger. S'il vous plaît, attendez

Plan Ordonnancement Obtention des tests de faisabilité entre processus Analyse de l'interaction entre processus Inclusion de processus apériodiques.

Présentations similaires


Présentation au sujet: "Plan Ordonnancement Obtention des tests de faisabilité entre processus Analyse de l'interaction entre processus Inclusion de processus apériodiques."— Transcription de la présentation:

1 Plan Ordonnancement Obtention des tests de faisabilité entre processus Analyse de l'interaction entre processus Inclusion de processus apériodiques

2 Vers une meilleure maîtrise du temps Objectifs : Nous présentons les mécanismes spécifiques qui permettent de prévoir avec plus d'exactitude le comportement temporel d'un système. Nous étudions les méthodes d'ordonnancement temps réel.

3 Ordonnancement /définitions C'est lors de l'ordonnancement que l'on choisit la tâche qui devient la tâche courante. Dans les systèmes temps réel, on espère collecter des informations a priori pour pouvoir prédire le comportement de l'application. C'est pourquoi des ordonnancements hors fonctionnement (off line) prennent les décisions avant l'exécution du système. Si cela est possible, on a recourt à des algorithmes en ligne (on line) qui prennent les décisions durant l'exécution du système.

4 Ordonnancement hors-ligne La séquence d'ordonnancement est donc pré-calculée avant l'exécution. A l'exécution, l'ordonnanceur est un simple séquenceur : on parle de cyclic scheduler Le séquenceur lit un tableau "modulo la longeur" : pas besoin d'exécutif multitâche La mise en œuvre est simple La surcharge est facilement détectable Rigidité du séquenceur est une limitation. 1 T1 2 T1 3 Nop 4 T2 5 T3 6 T1 7 T2 t=19 (19mod7)=5

5 Ordonnancement en ligne L'ordonnanceur implante un algorithme permettant de savoir à tout instant quel tâche exécuter L'ordonnancement est un exécutif multitâche conduits par priorité Les politiques sont importantes et flexibles Un surcoût en temps et en ressource lors de la mise en œuvre Les surcharge sont difficile à détecter

6 Ordonnancement /définitions Un algorithme est dit statique s'il sait déterminer a priori les ordonnancements possibles de son système. Un algorithme est dit dynamique si l'ordonnancement est déterminé lors de l'exécution. Il permet la prise en compte d'événements « non » prévus.

7 La faisabilité Des études ont été menées pour trouver des critères associés aux tâches pouvant conduire à une politique d'ordonnancement optimale dans certains cas. S'il existe un ordonnancement d'un ensemble de tâches qui respecte les contraintes temporelles associées à ces tâches, alors l'ensemble des tâches est dit faisable. Un ordonnancement optimal est un ordonnancement qui peut produire un ordonnancement pour tout ensemble faisable de tâches.

8 Critères liés aux tâches Les tâches périodiques sont celles qui doivent être activées à intervalles réguliers. Les instants de début d'exécution peuvent varier d'une instance à l'autre. Capacité Deadline T : période

9 Exemple : 20 l de fluide 1 versé toutes les 100 ms. 40 l de fluide 2 versé toutes les 150 ms. Sachant que pour verser un litre de fluide, il faut 1 ms. 100 ms pour une prise de température toutes les 350 ms. Réacteur Fluide 1Fluide 2

10 Modélisation du problème : La gestion des 2 fluides et de la température est représentée par 3 tâches indépendants nommées P1, P2 et P3. Ces 3 tâches seffectuent périodiquement avec des temps dactivation différents (resp. 100, 150 et 350). Et chacune exige un certain temps dexécution ( resp. 20, 40 et 100).

11 Exemple introductif : T C P P P P1 P2 P temps Réacteur Fluide 1Fluide 2

12 Exemple introductif : T C P P P P1 P2 P temps Réacteur Fluide 1

13 Exemple introductif : T C P P P P1 P2 P temps Réacteur Fluide 2

14 Exemple introductif : T C P P P P1 P2 P temps Réacteur

15 Exemple introductif : T C P P P P1 P2 P temps Réacteur Fluide 1

16 Exemple introductif : T C P P P P1 P2 P temps Réacteur Fluide 2

17 P1 P2 P temps Exemple introductif : T C P P P Réacteur

18 Exemple introductif : T C P P P ! P1 P2 P temps

19 Critères liés aux tâches Les tâches sporadiques ne sont pas activées de façon régulière, mais on peut définir un temps minimal d'apparition entre deux activations d'instances successives. Elles ont des contraintes de temps fortes. Les tâches apériodiques sont activées également à des instants irréguliers mais avec des échéances plus lâches et sans temps minimal entre deux activations. Capacité Deadline A A + ?

20 Les algorithmes Les algorithmes d'ordonnancement statiques pilotés par tables statiques préemptifs sur les priorités dynamiques basés sur une planification à l'exécution dynamiques basés sur la notion de meilleurs efforts

21 Les ordonnancements cycliques On cherche à découper a priori une application en séquences élémentaires qui ne seront jamais interrompues. Le modèle d'application est le suivant Une séquence est une procédure définie par l'utilisateur Un processus est une suite ordonnée de séquences ; qui s'exécutent consécutivement, dans l'ordre de la déclaration. L'ordonnancement des processus est régi par un calendrier, c'est une table spécifiant la liste des processus à activer ; elle est de longueur arbitraire et exploitée cycliquement. Le découpage en séquences élémentaires non interruptibles assure la protection des données partagées entre les processus.

22 Exemple TCD P1: P2:25825 P3:50550 P4:50450 P5: Définir : un cycle majeur PPCM = (25,50,100)=100 un cycle mineur qui correspond au rythme des interruptions d'horloge. Pendant le cycle mineur l'application ne peut être interrompue. Ils définissent des points de contrôle permettant de contrôler que les traitements applicatifs ont bien respecté leurs échéances.

23 Exemple TCD P1: P2:25825 P3:50550 P4:50450 P5: P1 P2 P3P P1 P2 P P1 P2 P P1 P2 P IT horloge 25 IT horloge = interruption possible

24 Les inconvénients Comment prendre en compte des traitements qui ne sont pas périodiques ? Comment ajouter un traitement supplémentaire sans modifier tout le système ? Difficile si le nombre de processus augmente. Il n'existe pas de solution optimale dont la complexité soit polynomiale en fonction du nombre de processus. Mais, il est très utilisé dans les systèmes critiques, en particulier les systèmes aéronautiques ou les systèmes de défenses.

25 Les algorithmes de décisions en ligne Les prise de décision s'effectuent à partir de critères qui peuvent être statiques (valeur d'une priorité) dynamique (dépend du temps) Dans les modèles statiques, on utilise une transformation hors ligne des contraintes temporelles en entiers fixes représentant les priorités. Dans les modèles dynamiques, la priorité évoluera en fonction du temps.

26 Plan Ordonnancement Obtention des tests de faisabilité entre processus Analyse de l'interaction entre processus Inclusion de processus apériodiques

27 Obtention de tests de faisabilité d'ordonnancement Existe-t-il des tests qui permettent de prévoir si un ensemble de tâches va respecter ses contraintes temporelles ?

28 Ordonnancement Rate-Monotonic (monotone par taux) Il désigne la méthode d'affectation hors ligne de priorités statiques à un ensemble de tâches. Les critères retenus pour les tâches sont les tâches sont périodiques et sont à l'état PRÊT au début de chaque période. Leur échéance se situe à la fin de la période. Les tâches peuvent être préemptées. Les tâches sont indépendantes les unes des autres. Le temps d'exécution est connu. L'affectation des priorités aux tâches se fait en fonction de la fréquence des tâches. Si Ti désigne la période de la tâche i, sa priorité est égale à 1/Ti

29 Conditions suffisantes de l'analyse Rate Monotonic Dans le cas où Di=Ti, n tâches respectent toutes les échéances si : n U = durée i / Période i i=1 n Ui = C i / T i i(2 1/i -1) i=1 i, 1 i n

30 Principe de l'obtention Cas simplifié de deux tâches. But : Atteindre une utilisation maximale du processeur en toute sécurité. On cherche donc une borne d'utilisation maximale pour tout ensemble de tâches qui utilisent le processeur au maximum de ses capacités. Démarche : Pour un C1 donné on cherche C2 de façon à utiliser un maximum le processeur.

31 Taux d'utilisation

32 Exemple pour RM : T C P P P

33 Exemple pour RM : T C P P P

34 Exemple pour RM : T C P P P Lapplication numérique pour n = 3 donne :

35 Exemple pour RM : T C P P P On a bien, La condition de faisabilité est satisfaite On peut appliquer l'algorithme RM.

36 Exemple pour RM : T C P P P P1 P2 P temps

37 Exemple pour RM : T C P P P P1 P2 P temps

38 Exemple pour RM : T C P P P P1 P2 P temps

39 Exemple pour RM : T C P P P P1 P2 P temps

40 Exemple pour RM : T C P P P P1 P2 P temps

41 Exemple pour RM : T C P P P Préemption de P3 par P1!!! P1 P2 P temps

42 Exemple pour RM : T C P P P P1 P2 P temps

43 Exemple pour RM : T C P P P P1 P2 P temps

44 Exemple pour RM : T C P P P P1 P2 P temps

45 Exemple pour RM : T C P P P P1 P2 P temps

46 Exemple pour RM : T C P P P Préemption de P3 par P2!!! P1 P2 P temps

47 Exemple pour RM : T C P P P P1 P2 P temps

48 Exemple pour RM : T C P P P Préemption de P3 par P1!!! P1 P2 P temps

49 Exemple pour RM : T C P P P P1 P2 P temps

50 Exemple pour RM : P1P2P3P1P2P

51 Exemple pour RM : P1P2P3P1P2P Utilisation du modulo.

52 Remarques : La condition de faisabilité est très restrictive puisque dans l'exemple précédent, nous étions limités à utiliser le processeur à 77,9 % de sa capacité totale. Mais notre but est de lutiliser au maximum de ses capacités et cela en toute sécurité.

53 Quelques précisions : On néglige le temps de communication et d'ordonnancement. Elles sont indépendants les unes des autres. La capacité de chaque tâche est connue. Leur échéance se situe à la fin de la période. Les tâches sont périodiques et sont à létat prêt au début de chaque période. Elles ne se suspendent pas elles-mêmes en cours d'exécution.

54 Exemple

55 RM Cas d'échec Il existe une solutionsolution

56 Théorème de la zone critique La condition de l'analyse RM est très restrictive. Théorème : Si toutes les tâches arrivent initialement dans le système simultanément et si elles respectent leur première échéance, alors toutes les échéances seront respectées par la suite, quel que soit l'instant d'arrivée des tâches. Remarques : C'est une condition nécessaire et suffisante si toutes les tâches du système sont initialement prêtes au même instant. C'est uniquement une condition suffisante dans le cas contraire.

57 Test de terminaison (completion time test) i min C j / t * t / T j 1 0

58 Méthode itérative pour le théorème de la zone critique On recherche le temps t tel que : i t = C j * t / T j j=1 i, 1 i n, t Di, i Soit W i(t) = C j * t / T j j=1 Wi(t) représente la demande cumulée de temps processeur de toutes les tâches jusqu'à la tâche i dans l'intervalle [0,t]. On recherche Wi(t) / Wi(t)=t par itérations successives et ce pour toutes les tâches i i On part de t0 = Cj, si l'instant t ne respecte pas la condition, on j=1itère en prenant comme nouveau temps t = Wi(t)

59 Exemple P1 P2 P3 3 = 300/100 Soit W i(t) = C j * t / T j =40*3

60 Exemple PiTC P P P U = 0.779, Mais on va montrer que l'exemple répond au théorème de la zone critique. Pour i=1 t0 = C1 = 40 = W1(40) Stop Pour i=2 t0 = C1+C2 = 80 = W2(80) Stop Pour i=3 t0 = C1+C2+C3 = 180 (>100 et 150) W 3(180)= 2C1+2C2+C3 = 260 W 3(260)= 3C1+2C2+C3 = 300 W 3(300)= 3C1+2C2+C3 = 300 c'est la condition recherchée Les trois tâches sont donc ordonnançables selon le théorème de la zone critique. La troisième tâche terminera l'exécution de sa première instance au temps 300.

61 simulation du comportement

62 Autre algorithme : inverse deadline Algorithme avec comme critère l'inverse de la deadline D

63 Inverse deadline T2 T1 T2 T3 nopT2 T3 nopT2 nop T1 T2 T3

64 Ordonnancements dynamiques Les ordonnancements sont dits dynamiques car l'allocation de priorité aux tâches se fait lorsque le système est en fonctionnement. Ils utilisent l'un des critères suivant à fin de prendre les décisions : Échéances la plus proche d'abord (Earliest Deadline First) prend en compte l'urgence du travail à accomplir. Marge la plus courte d'abord (Least Laxity Fisrt) prend également en compte l'urgence du travail à accomplir mais lui rajoute la notion de durée du travail.

65 Exemple EDF TC P162 P282 P

66 Exemple LLF TC P162 P282 P La marge = Échéance - durée restante de traitement - temps courant Least Laxity Fisrt

67 Exemple TDCML T1331=Deadline-C_restante T2441 T3632 Ici T3 peut être aussi ordonnancé

68 Critère de l'ordonnançabilité EDF et LLF Si l'on applique les algorithmes EDF et LLF à des tâches indépendantes périodiques le critère de faisabilité est donné par : n Ui = C i / T i 1 i=1

69 Optimalité de l'algorithme d'ordonnancement EDF L'algorithme EDF est dit optimal car si un algorithme arrive à ordonnancer un ensemble de tâches possédant des échéances et des temps de traitement arbitraires, alors EDF saura également le faire.

70 Plan Ordonnancement Obtention des tests de faisabilité entre processus Analyse de l'interaction entre processus Inclusion de processus apériodiques

71 Rappels la communication et la synchronisationcommunication

72 Analyse de l'interaction entre processus Prise ne compte des cas de blocage : inversion de priorité Héritage de priorité Prise en compte des cas de blocage dans l'analyse RM.

73 Analyse de l'interaction entre processus Prise en compte des cas de blocage : inversion de priorité. Hypothèse supplémentaire : Les tâches accèdent en exclusion mutuelle à des ressources communes. Ceci rend les tâches potentiellement dépendantes les unes des autres. Problème : une tâche de plus faible priorité peut bloquer une autre tâche de priorité plus forte quand elle est en section critique = Problème de l'inversion de priorité.

74 j3 démarre à tps= j3 j2 j1 S + Prioritaire 0 1 S S S 57 t0 Rés j1 2 S(2) j2 7 j3 0 S(5) 1215 fin Inversion de Priorité 10

75 j3 demande S à tps= j3 j2 j1 S + Prioritaire S S S 57 t0 Rés j1 2 S(2) j2 7 j3 0 S(5) fin Inversion de Priorité

76 j1 démarre à tps= j3 j2 j1 S + Prioritaire S S S 57 t0 Rés j1 2 S(2) j2 7 j3 0 S(5) fin Inversion de Priorité

77 j3 j2 j1 S + Prioritaire S S S j1 demande S qui est pris par j3 donc il est bloqué et redonne la main à j3 57 t0 Rés j1 2 S(2) j2 7 j3 0 S(5) fin Inversion de Priorité

78 j3 j2 j1 S + Prioritaire 0 1 S S S 5 À t=7, j2 démarre son exécution et finit à t=10 7 t0 Rés j1 2 S(2) j2 7 j3 0 S(5) 1015 fin Inversion de Priorité 212

79 À t=10, j2 finit son exécution et redonne la main à j j3 j2 j1 S + Prioritaire S S S 57 t0 Rés j1 2 S(2) j2 7 j3 0 S(5) fin Inversion de Priorité

80 A t=12, j3 relâche S et j1 profite pour récupérer S qu'elle avait demandé j3 j2 j1 S + Prioritaire 0 1 S S S 57 t0 Rés j1 2 S(2) j2 7 j3 0 S(5) fin Inversion de Priorité 2

81 À t=15, j1finit son exécution et laisse j3 finir elle aussi. À t=15, j1finit son exécution et laisse j3 finir elle aussi j3 j2 j1 S + Prioritaire S S S 57 t0 Rés j1 2 S(2) j2 7 j3 0 S(5) fin Inversion de Priorité

82 j3 j2 j1 S + Prioritaire S S S 5 Inversion de priorité 7 t0 Rés j1 2 S(2) j2 7 j3 0 S(5) fin Durée ?

83 Solutions à l'inversion de priorité Une tâche ne doit pas être préemptée systématiquement si elle est en section critique. Cette solution est acceptable pour des accès courts. Sinon le système créera des situations d'inversion de priorité fréquentes et inutilement longues. Méthode de l'héritage de priorité (priority inherance). Le système effectue une gestion dynamique de priorité. L'idée est de rajouter aux sémaphores la notion de possesseurs.

84 Héritage de priorité Le possesseur d'un sémaphore est la tâche qui a demandé et obtenu le droit de rentrer dans la zone d'exclusion mutuelle protégé par le sémaphore. Dans l'héritage de priorité simple, les sémaphores gèrent leur file d'attente en tenant compte des priorités des tâches qui désirent prendre le sémaphore. Lorsqu'une tâche détient un sémaphore et qu'une autre le réclame, la priorité de la tâche qui possède le sémaphore est augmentée au niveau de la priorité de la tâche qui le réclame.

85 Exemple T3 demande et obtient S T1 demande S Fin T2 Fin T1 + Prioritaire T3 hérite de la priorité de T1 Fin T3 T3 relâche S

86 Comparaison ?

87 Autre exemple les tâches 1 et 2 ne partagent aucune ressource. Déroulement normale jusquà la fin.j4 demande V j4 demande S donc j5 bloque j4 qui bloque j1,donc j1 est bloqué par j5 qui hérite sa priorité (phénomène de Transitivité). j5 prend la main puis libère S à tps=11. j1 demande V qui est pris par j4.j4 bloque donc j1 et hérite sa priorité.j2 demande S qui est pris par j5. j5 bloque j2 et hérite sa priorité. 13 j5 demande Sj5 démarre taches rieipiSections critiques j1 j2 j3 j4 j [V;1] [S;1] [V;2,5[S;1,5]] [S;4]

88 Partage de plusieurs ressources : les inter-blocages possibles Lorsqu'une tâche peut utiliser plusieurs sémaphores des cas d'inter-blocage peuvent apparaître. L'inter-blocage n'est pas dû à une inversion de priorité mais à l'entrelacement des accès aux sémaphores.

89 Exemple T2 démarre T1 démarre P(S2) P(S1)P(S2)T1 bloquée P(S1) T2 bloquée

90 Solutions 1 Demander l'accès aux sémaphores dans le même ordre. 2 Exécuter en exclusion mutuelle toutes les sections correspondant aux sections critiques imbriquées. On garantit qu'une tâche ne peut commencer l'exécution d'une section critique qu'à condition de s'exécuter à un niveau de priorité supérieur aux niveaux de priorité des sections critiques préemptées.

91 Solution : Héritage par la méthode du verrou le plus haut Dans la technique du verrou le plus haut (highest lock) la tâche qui utilise un sémaphore hérite d'une priorité qui est supérieure au plafond de priorité du sémaphore. Le plafond de priorité (priority celling) d'un sémaphore est égal à la priorité maximale des tâches pouvant prendre le sémaphore. Cela consiste à maintenir une valeur qui représente la valeur maximale du plafond courant. Priorité(verrou)= priorité_max(tâches qui prennent le verrou). Plafond=Max(priorités des verrous pris).

92 Exemple T2 démarre T1 Prêt P(S2) P(S1) V(S1) V(S2) P(S2)P(S1)V(S2) V(S1)

93 Solution : Héritage par la méthode du plafond de priorité Dans la méthode du plafond de priorité (priority ceilling protocol) l'OS maintient une valeur qui représente la valeur maximale du plafond courant. Lorsqu'une tâche essaye d'exécuter une section critique, elle est suspendue sauf si sa priorité est supérieure au plafond de priorité de tous les sémaphores pris par les autres tâches.

94 Exemple T2 démarre T1 démarre P(S2) Plafond = Max(T1,T2)=T1 P(S2) P(S1)V(S2) P(S1) V(S1) V(S2) P(S1) refusé T1<=Plafond V(S1) héritage

95 Exemple ? 2=П(t) P4< P1>

96 Comparaison

97 Plan Ordonnancement Obtention des tests de faisabilité entre processus Analyse de l'interaction entre processus Inclusion de processus apériodiques

98 On peut penser à interrompre les tâches périodiques pour faire passer les tâches apériodiques jusqu'à ce que celles ci se terminent. Mais on peut mettre en péril l'ordonnancement. On peut affecter la priorité la plus basse aux tâches apériodiques. Cette solution n'offre qu'un temps de réponse moyen aux tâches apériodiques.

99 Les serveurs On affecte un processus périodique en charge de contrôler les taches apériodiques en leur offrant la possibilité d'exécuter leur activité au niveau de priorité requis. Les méthodes existantes Le serveur par scrutation (polling server) le serveur différé (deferabe serveur)

100 Serveur par scrutation Le serveur de scrutation a la priorité la plus forte. On définit une capacité Cm pour cette tâche en fonction du profil d'arrivée des événements apériodiques à servir. Le serveur est divisé en deux parties La première regarde périodiquement s'il y a des événements périodiques à traiter La deuxième partie est déclenchée s'il y a au moins un événement en attente d'être traité.

101 Exemple TC P1102 P2156 S52 tC e121.5 e262 e e2 Scrutation e1 sera pris en compte en 5 Prise en compte e2 prise en compte immédiate 0.5

102 Serveurs d'événements apériodiques On fournit une ressource privée (une tâche fictive) à l'usage exclusif des tâches apériodiques. On crée une tâche périodique DS, de capacité Cds et de période Tds qui servent à définir sa priorité selon la méthode RM. Si toutes les tâches apériodiques sont traitées avec moins de capacité, on abandonne plus tôt la tâche DS (la capacité non utilisée est alors perdue).

103 Exemple

104 TC P162 P283 Ds51 tC e11.5 e272 e3141 Épuisement de DS Renouvellement de DS e1e2 e

105 Serveur périodique et ordonnancement dynamique EDF Les ordonnancements dynamiques permettent a priori, une meilleure utilisation du processeur. L'idée est de servir les tâches aux contraintes plus lâches au moyen de serveurs périodiques.

106 Exemple TC P162 P283 Ds41 tC e e262 Épuisement de DS Renouvelement de DS e1e2 Arrive e2 et EDF plus gd E2 est là mais P1 plus urgent EDFP1=12-9 EDFe2=3

107 Serveur sporadique

108 Résumé : Rate Monotonic Algorithme statique d'assignation de priorité Test : charge totale sous la contrainte n(2 1/n -1) Analyse exacte par le théorème de la zone critique RM peut être augmenté pour prendre en compte les situations de blocage et les événements apériodiques. Optimal car si un autre algorithme statique arrive à produire un ordonnancement alors RM y arrive aussi.

109 Résumé : Earliest Dealine First Dynamique Test : charge totale < 100% Entraîne le moins de changements de contexte EDF est optimal car on peut transformer tout ordonnancement arbitraire en ordonnancement EDF. EDF peut être augmenté pour prendre en compte les situations de blocage et les événements apériodiques. Meilleur algorithme quand la loi d'arrivée des tâches est quelconque et quand on ne connaît par leur capacité.

110 Exercice 1 On considère un système constitué de deux tâches périodiques indépendantes s'exécutant sur un processeur. Ces deux tâches sont définies par : Ces deux tâches sont elles ordonnançables par l'analyse Rate Monotonic ? Sont elles ordonnaçables par EDF ? PiTC T142 P2105

111 Exercice 2 On considère un système constitué de trois tâches périodiques définies par : On applique d'abord l'analyse Rate Monotonic sur les tâches. Grâce au test de terminaison, calculer l'instant auquel la tâche3 termine sa première exécution. Respecte-t-elle son échéance ? On classe maintenant les trois tâches en fonction de leurs échéances (analyse deadline Monotonic). Utiliser le test suffisant de l'analyse RM pour prouver que les tâches 1,3 sont ordonnançables ( on considère que la tâche C subit un blocage E3 égal à T3-D3. PiTCD T P P

112 Plan : Introduction I) De la théorie à la pratique II) Mise en œuvre du simulateur 1) Modélisation des tâches 2) Gestion des priorités Java 3) Problèmes engendrés par lOS 4) Démonstration du simulateur. Conclusion

113 Le cœur du scheduler : Comment gérer les priorités des threads pour quun ordonnancement tel que Rate Monotonic soit respecté ?

114 Gestion de priorité (1) : 1ère idée : Attribuer un niveau de priorité à chaque tâche à ordonnancer.

115 Gestion de priorité (1) : Problème : Si le nombre de tâches est supérieur au nombre de priorités… !

116 Gestion de priorité (2) : 2 ème idée : Utiliser 3 niveaux de priorités. 1 niveau pour le scheduler : priorité maximum 1 autre pour la tâche courante : priorité intermédiaire 1 autre pour les autres tâches : priorité minimum.

117 Gestion de priorité (3) : Java virtuel machine scheduler T1T2T3T4 Max Middle Min priorité

118 Gestion de priorité (4) : Java virtuel machine scheduler T1T2T3T4 Max Middle Min priorité

119 Gestion de priorité (5) : Java virtuel machine scheduler T1 T2 T3T4 Max Middle Min priorité

120 Gestion de priorité (7) : Java virtuel machine scheduler T1 T2 T3T4 Max Middle Min priorité Sleep 60 ns

121 Gestion de priorité (8) : Max Middle Min priorité Java virtuel machine scheduler T1 T2 T3T4

122 Gestion de priorité (9) : Java virtuel machine scheduler T1 T2 T3T4 Max Middle Min priorité

123 Gestion de priorité (10) : Java virtuel machine scheduler T1T2T3T4 Max Middle Min priorité

124 À t=15, j1finit son exécution et laisse j3 finir elle aussi. À t=15, j1finit son exécution et laisse j3 finir elle aussi. À t=10,j2 finit son exécution et redonne la main à j3 j3 demande S à tps=1 j1 démarre à tps=2 j3 démarre à tps=0 A t=12, j3 relâche S et j1 profite pour récupérer S qu'elle avait demandé j3 j2 j1 S + Prioritaire S S S j1 demande S qui est pris par j3 donc il est bloqué et redonne la main à j3 5 À t=7, j2 démarre son exécution et finit à t=10 7 t0 Rés j1 2 S(2) j2 7 j3 0 S(5) fin Annexe Inversion de Priorité


Télécharger ppt "Plan Ordonnancement Obtention des tests de faisabilité entre processus Analyse de l'interaction entre processus Inclusion de processus apériodiques."

Présentations similaires


Annonces Google