La présentation est en train de télécharger. S'il vous plaît, attendez

La présentation est en train de télécharger. S'il vous plaît, attendez

Formation pédagogique Amiens 2 Organisation et gestion de données au Cycle 3 Mercredi 17 novembre 2010.

Présentations similaires


Présentation au sujet: "Formation pédagogique Amiens 2 Organisation et gestion de données au Cycle 3 Mercredi 17 novembre 2010."— Transcription de la présentation:

1 Formation pédagogique Amiens 2 Organisation et gestion de données au Cycle 3 Mercredi 17 novembre 2010

2 Représentations Organisation et gestion de données?

3 Organisation de données

4 Constats évaluation CM2 Pourcentage de réussite: Organisation et gestion de données Amiens 2 34,5%

5 Constats évaluation CM2

6 Constats projets décoles Exemple: Constats dune équipe « En ce qui concerne les résultats des élèves aux évaluations CM2 et CE1 en mathématiques, au-delà des difficultés particulières de certains dentre eux, on observe des résultats insuffisants concernant le domaine des nombres et des calculs. Une analyse plus fine a permis de constater que cest avant tout la résolution de problèmes (lecture, traitement des informations, repérage de la question, des données utiles…) qui a mis les élèves en échec. »

7 Objectif, stratégie et action de léquipe de lécole

8 Objectif: Développer les compétences des élèves en ce qui concerne le traitement des informations dans le cadre de la résolution de problèmes.

9 Objectif, stratégie et action de léquipe de lécole Objectif: Développer les compétences des élèves en ce qui concerne le traitement des informations dans le cadre de la résolution de problèmes. Stratégie: Mettre en œuvre de véritables situations de recherches en résolution de problèmes.

10 Objectif, stratégie et action de léquipe de lécole Objectif: Développer les compétences des élèves en ce qui concerne le traitement des informations dans le cadre de la résolution de problèmes. Stratégie: Mettre en œuvre de véritables situations de recherches en résolution de problèmes. Action envisagée: Organiser un jeu mathématique impliquant toutes les classes.

11 Programmes 2008

12 Extrait du programme de français du cycle 3 « La lecture continue à faire lobjet dun apprentissage systématique : …/… compréhension de textes scolaires (énoncés de problèmes, consignes, leçons et exercices des manuels) …/… »

13 Extraits des programmes MATHÉMATIQUES La pratique des mathématiques développe le goût de la recherche et du raisonnement, limagination et les capacités dabstraction, la rigueur et la précision. Du CE2 au CM2, dans les quatre domaines du programme, lélève enrichit ses connaissances, acquiert de nouveaux outils, et continue dapprendre à résoudre des problèmes. Il renforce ses compétences en calcul mental. Il acquiert de nouveaux automatismes. Lacquisition des mécanismes en mathématiques est toujours associée à une intelligence de leur signification. La maîtrise des principaux éléments mathématiques aide à agir dans la vie quotidienne et prépare la poursuite détudes au collège. 1- Nombres et calcul La résolution de problèmes liés à la vie courante permet dapprofondir la connaissance des nombres étudiés, de renforcer la maîtrise du sens et de la pratique des opérations, de développer la rigueur et le goût du raisonnement.

14 2- Géométrie Les problèmes de reproduction ou de construction de configurations géométriques diverses mobilisent la connaissance des figures usuelles. Ils sont loccasion dutiliser à bon escient le vocabulaire spécifique et les démarches de mesurage et de tracé. 3- Grandeurs et mesures La résolution de problèmes concrets contribue à consolider les connaissances et capacités relatives aux grandeurs et à leur mesure, et, à leur donner sens. À cette occasion des estimations de mesure peuvent être fournies puis validées. 4- Organisation et gestion de données Les capacités dorganisation et de gestion des données se développent par la résolution de problèmes de la vie courante ou tirés dautres enseignements. Il sagit dapprendre progressivement à trier des données, à les classer, à lire ou à produire des tableaux, des graphiques et à les analyser.

15 « Apprendre à résoudre des problèmes peut- il faire l'objet d'une construction dans la progressivité des apprentissages du CE2 au CM2? »

16 Comment faire?

17 Repères pour organiser la progressivité au Cycle 3 CE2CM1CM2 - Savoir organiser les données dun problème en vue de sa résolution. - Utiliser un tableau ou un graphique en vue dun traitement des données. - Savoir organiser les données dun problème en vue de sa résolution. - Utiliser un tableau ou un graphique en vue dun traitement des données. - Construire un tableau ou un graphique. - Interpréter un tableau ou un graphique. - Lire les coordonnées dun point. - Placer un point dont on connaît les coordonnées. - Utiliser un tableau ou la « règle de trois » dans des situations très simples de proportionnalité. - Résoudre des problèmes relevant de la proportionnalité et notamment des problèmes relatifs aux pourcentages, aux échelles, aux vitesses moyennes ou aux conversions dunité, en utilisant des procédures variées (dont la « règle de trois »).

18 DEUXIÈME PALIER POUR LA MAÎTRISE DU SOCLE COMMUN : COMPÉTENCES ATTENDUES À LA FIN DU CM2 Compétence 3 : Les principaux éléments de mathématiques et la culture scientifique et technologique A) Les principaux éléments de mathématiques Lélève est capable de : - écrire, nommer, comparer et utiliser les nombres entiers, les nombres décimaux (jusquau centième) et quelques fractions simples ; - restituer les tables daddition et de multiplication de 2 à 9 ; - utiliser les techniques opératoires des quatre opérations sur les nombres entiers et décimaux (pour la division, le diviseur est un nombre entier) ; - calculer mentalement en utilisant les quatre opérations ; - estimer lordre de grandeur dun résultat ; - utiliser une calculatrice ; - reconnaître, décrire et nommer les figures et solides usuels ; - utiliser la règle, léquerre et le compas pour vérifier la nature de figures planes usuelles et les construire avec soin et précision ; - utiliser les unités de mesure usuelles ; utiliser des instruments de mesure ; effectuer des conversions ; - résoudre des problèmes relevant des quatre opérations, de la proportionnalité, et faisant intervenir différents objets mathématiques : nombres, mesures, règle de trois, figures géométriques, schémas ; - savoir organiser des informations numériques ou géométriques, justifier et apprécier la vraisemblance dun résultat -lire, interpréter et construire quelques représentations simples : tableaux, graphiques.

19 Quest ce quun problème?

20 C'est une situation initiale avec un but à atteindre demandant à un sujet d'élaborer une suite d'actions ou d'opérations pour atteindre ce but. Il n'y a problème que dans un rapport sujet/situation où : la solution n'est pas disponible d'emblée, mais elle est possible à construire. d'après Jean Brun

21 Ecrire le dernier problème que vous avez donné à vos élèves.

22 Classer ces problèmes selon des critères que vous aurez établis.

23 Des catégories de problèmes…

24 Première classification : à partir des formes dénoncés

25 Des catégories de problèmes… Première classification : à partir des formes dénoncés Deuxième classification : à partir des notions mathématiques

26 Des catégories de problèmes… Première classification : à partir des formes dénoncés Deuxième classification : à partir des notions mathématiques Troisième classification : à partir des objectifs pédagogiques

27 Première classification : à partir des formes dénoncés Texte écrit seul Texte accompagné dun tableau, dun diagramme… Texte et image(s) : la photo, le dessin, la BD… sont sources ou non dinformations pour la résolution de problèmes Texte et document(s) réel(s) : publicité, extrait de tarif… Lénoncé, donné à loral, en partie ou entièrement

28 Deuxième classification : à partir des notions mathématiques 1- Types de nombres / Opérations utilisées / Mesures / Objets géométriques 2- Etude des notions en terme de « champ conceptuel » : espace de problèmes dont le traitement implique des concepts et des procédures de plusieurs types en étroite connexion. (Ex : le champ conceptuel des structures multiplicatives: multiplication/division/proportionnalité)

29 Troisième classification : à partir des objectifs pédagogiques Un problème dapplication ou de réinvestissement dune notion connue Les problèmes qui demandent un réinvestissement de connaissances antérieures : ici, il faudra utiliser une notion déjà construite, la réinvestir. La tâche consistera à reconnaître au travers du problème la notion qui permet sa résolution. En classe, on utilise ce type de problème pour fixer une compétence : cest à dire une connaissance, la capacité à la mettre en œuvre, laptitude à la mobiliser à bon escient. On peut discerner quatre sous types de problèmes de réinvestissement : -ceux qui proposent un réinvestissement immédiatement après la construction de la connaissance, -ceux qui proposent un réinvestissement plus différé dans le temps. On les pose alors pour évaluer les aptitudes de lélève face à une situation différente de celles rencontrées lors de la construction de la connaissance, tout en nécessitant la mobilisation de cette même connaissance. Cest ce que lon nomme un problème de transfert. -ceux qui demandent de mobiliser plusieurs connaissances construites ultérieurement. La difficulté pour lélève, sera de mobiliser des connaissances parfois très antérieures. Ce sont les problèmes de synthèse. -ceux qui ont pour objectif dévaluer la maîtrise des connaissances. Cest le problème dévaluation dont la nature est très proche du problème de synthèse. Un problème pour apprendre Les problèmes qui exigent la construction de nouvelles connaissances pour les résoudre : ici, celui qui est face au problème ne possède pas de réponse adaptée. Il va être obligé de trouver « quelque chose de nouveau » qui sera efficace face à la nouvelle situation rencontrée comme à toutes situations identiques. Un problème pour apprendre à chercher (un problème ouvert) Les problèmes pour chercher : ici, lobjectif est de provoquer la recherche de façon à développer les compétences de chercheur. On ne sintéresse pas à la mobilisation de connaissances antérieures. On vise à apprendre à chercher

30 Troisième classification : à partir des objectifs pédagogiques Un problème dapplication ou de réinvestissement dune notion connue -ceux qui proposent un réinvestissement immédiatement après la construction de la connaissance, 3 enfants doivent se partager équitablement 24 billes. Combien chacun en aura-t-il? Exemple:

31 Troisième classification : à partir des objectifs pédagogiques Un problème dapplication ou de réinvestissement dune notion connue -ceux qui proposent un réinvestissement immédiatement après la construction de la connaissance, 3 enfants doivent se partager équitablement 24 billes. Combien chacun en aura-t-il? Exemple: -ceux qui proposent un réinvestissement plus différé dans le temps. On les pose alors pour évaluer les aptitudes de lélève face à une situation différente de celles rencontrées lors de la construction de la connaissance, tout en nécessitant la mobilisation de cette même connaissance. Cest ce que lon nomme un problème de transfert.

32 Troisième classification : à partir des objectifs pédagogiques Un problème dapplication ou de réinvestissement dune notion connue -ceux qui proposent un réinvestissement immédiatement après la construction de la connaissance, 3 enfants doivent se partager équitablement 24 billes. Combien chacun en aura-t-il? Exemple: -ceux qui proposent un réinvestissement plus différé dans le temps. On les pose alors pour évaluer les aptitudes de lélève face à une situation différente de celles rencontrées lors de la construction de la connaissance, tout en nécessitant la mobilisation de cette même connaissance. Cest ce que lon nomme un problème de transfert. Exemple: Pour soigner sa toux, Julie doit prendre 25 gouttes d'un médicament 2 fois par jour pendant 15 jours. Combien de gouttes prendra-t-elle au cours de ce traitement ? Chaque goutte représente 0,5 ml. De combien de flacons de 20 cl a-t-elle besoin ?

33 Troisième classification : à partir des objectifs pédagogiques Un problème dapplication ou de réinvestissement dune notion connue -ceux qui demandent de mobiliser plusieurs connaissances construites ultérieurement. La difficulté pour lélève, sera de mobiliser des connaissances parfois très antérieures. Ce sont les problèmes de synthèse. -ceux qui ont pour objectif dévaluer la maîtrise des connaissances. Cest le problème dévaluation dont la nature est très proche du problème de synthèse.

34 Troisième classification : à partir des objectifs pédagogiques Un problème dapplication ou de réinvestissement dune notion connue -ceux qui demandent de mobiliser plusieurs connaissances construites ultérieurement. La difficulté pour lélève, sera de mobiliser des connaissances parfois très antérieures. Ce sont les problèmes de synthèse. Une école organise une excursion pour 48 élèves. La location du car coûte La commune paie les 2/5 de cette somme. Le reste de la dépense est à la charge des parents des enfants. Quelle somme chaque élève doit-il verser ? Le départ a lieu à 6 h 35. La durée du trajet est de 2 h 40. On prévoit en plus un arrêt de 30 min. À quelle heure le car arrivera-t-il à destination ? Dans ce groupe de 48 élèves, les 5/8 sont des filles. Quel est le nombre de garçons ? Exemple: -ceux qui ont pour objectif dévaluer la maîtrise des connaissances. Cest le problème dévaluation dont la nature est très proche du problème de synthèse.

35 Petit problème pour apprendre à chercher, niveau professeur.

36 « Prince et Valet » Un prince et son valet tombent dans une embuscade de Roro des Bois. A eux deux, ils possèdent 113. Roro prend 25 au prince et donne 16 au valet. Ils possèdent alors la même somme d'argent. Quelle somme possédait chacun ?

37 Solution: Soit y la somme que possédait le valet et x la somme que possédait le prince. Comme a eux deux, ils possédaient 113, on a : x + y = 113. Comme après la rencontre avec Roro ils ont la même somme, on a : x - 25 = y On a donc : x = y. En remplaçant x par son expression dans la deuxième égalité, on obtient : y - 25 = y + 16 d'où : = y + y donc : 72 = 2y donc y = 72/2 = 36. Et : x = = 77. Le valet avait donc 36 et le prince 77.

38 Troisième classification : à partir des objectifs pédagogiques -Le problème ouvert permet de proposer à l'élève une activité comparable à celle du mathématicien confronté à des problèmes qu'il n'a pas appris à résoudre. -Le problème met l'accent sur des objectifs d'ordre méthodologiques: essayer, organiser sa démarche, mettre en œuvre une solution originale, en mesurer l'efficacité, argumenter... -Le problème ouvert permet de prendre en compte et même de valoriser les différences entre élèves. -Le problème ouvert permet à l'enseignant de faire connaître aux élèves quelles sont ses attentes en matière de résolution de problèmes. Il s'agit de chercher plutôt que de trouver rapidement. Il faut prendre des initiatives… La responsabilité de la solution appartient entièrement à l'élève. Problème « ouvert »

39 Petits problèmes pour apprendre à chercher, niveau élève.

40 Troisième classification : à partir des objectifs pédagogiques Un problème pour apprendre à chercher (un problème ouvert)apprendre à chercher Exemple: Nécessite une organisation pour obtenir toutes les possibilités.

41 Troisième classification : à partir des objectifs pédagogiques Enoncé On dispose de 5 parfums de glace : citron, vanille, chocolat, fraise, pomme. Trouve tous les cornets de glace à trois boules possibles. Objectifs Développer chez les élèves un comportement de recherche Développer des capacités à chercher, abstraire, raisonner, sorganiser, prouver et modéliser. Items Chercher et produire une solution personnelle dans un problème de recherche Formuler et communiquer sa démarche Argumenter à propos de la validité dune solution produite par soi-même ou par un camarade. Savoir écouter et respecter la parole dautrui. Modalités de mise en œuvre de lactivité recherche individuelle (10-15 minutes) recherche par deux (20-25 minutes) recherche par groupes de 4 ou 5 (30-35 minutes) synthèse collective (25-30 minutes) Procédures rencontrées 1. Une résolution par dessins ou schémas. 2. Une résolution par symboles (lettres, croix…). 3. Ecrire en toutes lettres les solutions. 4. Faire des arbres. Principaux obstacles à la résolution Un obstacle porte sur la possibilité de répéter une ou deux fois le même parfum. Commentaires Cette situation a été proposée à des CE2 avec seulement 3 parfums. Ils ont rapidement résolu la situation en trouvant les 10 solutions. On peut directement commencer par 4 parfums. Avec les CM, la difficulté portait sur le nombre de réponses (35). Labsence de méthode a engendré un contrôle fastidieux des réponses pour éviter les doublons. Lutilisation de méthodes plus systématiques (tableau, la famille des 3 mêmes parfums…) permet de visualiser rapidement lensemble des solutions.

42 Troisième classification : à partir des objectifs pédagogiques Exemple: La résolution privilégie le recours à la déduction

43 Troisième classification : à partir des objectifs pédagogiques Exemple: La résolution privilégie le recours à la déduction

44 La cible

45 Solution: La cible (Bleu Rouge) 16+8=24 (Jaune Bleu) 19+5=24 Donc(Jaune Rouge) 8+5=13 Et 3 jaunes=> 19 – 13 = 6 Doù 6/3= 2 Rouge 15 Bleu 7 Jaune 2 Score: 21 points (7 x 3 = 21)

46 Quelles sont les difficultés rencontrées par vos élèves dans la résolution de problèmes ?

47 Phases de la démarche de résolution de problèmes Phase 1 : se représenter le problème Phase 2 : élaborer une solution Phase 3 : rédiger une réponse

48 Phase 1 : Se représenter le problème

49 Sen faire une image mentale 1 : comprendre la situation (De quoi sagit-il ? Dun problème ! A quoi le reconnaît-on ?) Sen faire une image mentale 2 : comprendre lénoncé, en restituer une représentation orale. Justifier sa représentation et la confronter à celle des autres.

50 Difficultés de lecture : - Construire « une vraie séance de lecture » à partir dun énoncé de problème quon résout ensuite (travail concernant la partie informative et la partie injonctive dun énoncé), - Pour chaque problème, en amont, un travail spécifique de compréhension pourra être réalisé sur les difficultés repérées par lenseignant dans lénoncé, - Planifier un travail sur un point particulier du champ des outils de la langue (lutilisation des phrases interrogatives dans les énoncés de problèmes, lutilisation des pronoms, lutilisation des verbes, etc.)

51 -Comprendre, cest commencer à résoudre, - Comprendre, ça sapprend : dédier des séances à la compréhension.

52 Autres activités possibles :

53 Pour des propositions supplémentaires concernant le travail sur la maîtrise de la langue en mathématiques, voir (site d'Annie Camenisch) ethttp://a.camenisch.free.fr/pe2/disciplines/maths.htm (site de Jean-Luc Brégeon)

54 Difficultés du choix de la bonne opération : Schématiser : Pour schématiser, pouvoir se représenter la situation (images mentales), Schématiser sapprend

55 Etymologie du mot : sch é ma nom masculin ( latin schema, -atis, du grec skhêma, atos, figure) Dessin, trac é figurant les é l é ments essentiels d'un objet, d'un ensemble complexe, d'un ph é nom è ne, d'un processus et destin é s à faire comprendre sa conformation et/ou son fonctionnement ; Définitions schématiser (v.) représenter d'une manière schématique, en réduisant à l'essentiel. synonymes schématiser (v.) condensercondenser, matérialiser, résumer, simplifier, stylisermatérialiserrésumersimplifierstyliser

56 -Donner des énoncés et des schémas les explicitant, trouver parmi plusieurs le schéma qui illustre une situation. -Produire un seul schéma, en discuter avec les autres, -Inventer un schéma, expliquer de quoi il est solution. Exemples de tels schémas : orange.fr/Problemes/doc5.pdfhttp://pernoux.pagesperso- orange.fr/Problemes/doc5.pdf Pour des compléments concernant la schématisation, voir et

57

58

59

60

61 Phase 2 : Elaborer une solution

62 Confronter sa compréhension de la situation à ses connaissances. - Reconnaître la solution : procéder par analogie (lénoncé me demande de faire un calcul, un tracé géométrique… cest comme la fois où…) - Définir une organisation, une logique, - Essayer, recommencer -Pour travailler cette phase, proposer des énoncés :. Qui donnent la représentation de la situation (tableau, schéma…). Qui ne demandent pas de rédaction de « phrase réponse »

63 Phase 3 : Rédiger une réponse

64 Rédiger pour quoi faire puisque jai trouvé la solution ?

65 - Parce que cest lhabitude : un code inhérent aux problèmes. - Pour communiquer aux autres, au maître. -Parce que quand jécris, je structure ma pensée : la rédaction de la réponse me renvoie à la résolution (je vérifie ma réponse : est- elle conforme à la question ? Puis-je savoir si jai « juste » ?) : ma rédaction EST explication. Parfois cest loccasion de se rendre compte dune erreur… Pour que lélève se pose cette question, « ma réponse est-elle possible ? » (esprit critique de lélève à travailler)

66 Pour travailler cette phase, proposer des énoncés : - qui donnent la représentation de la situation (tableau, schéma…) - qui nécessitent une recherche sans obstacles majeurs pour conserver lintérêt de la résolution et donc de la communication du résultat (doc 9)

67 LOrganisation et la Gestion des Données

68 1.« Améliorer les performances sportives avec les TICE », usage dun tableur Excel 2.Enseignant 3.Elèves

69 Les tableaux Dans de nombreux domaines comme les mathématiques, la géographie, les sciences, on utilise des tableaux. Par exemple, dans la résolution de problèmes de proportionnalité, lutilisation de tableaux permet dorganiser les données en relation et peut être une aide à la résolution. Il est donc important queles élèves de cycle 3 puissent utiliser des tableaux, en compléter et soient capables de les utiliser pour mettre en forme des situations. Il est également nécessaire quils puissent les associer à des diagrammes simples. Définition Daprès le dictionnaire Larousse : un tableau est une liste contenant des informations, des données, desrenseignements disposés de façon claire, systématique et méthodique. Différents types de tableaux: Il existe plusieurs types de tableaux : des tableaux à simples entrées, des tableaux à doubles entrées.

70 Les diagrammes et représentations graphiques Il est nécessaire que les élèves de cycle 3 sachent utiliser ou créer des graphiques représentant des relations ou des évolutions. Ces diagrammes peuvent avoir différents aspects : diagrammes en bâtons(histogrammes), parts de disque (camemberts) ou autres (courbes, nuages de points, …). Savoir lire de tels diagrammes et savoir les utiliser est une compétence dont lapprentissage débute au cycle 3. Définition dun diagramme (dictionnaire Larousse) Un diagramme est une représentation graphique ou schématique permettant de décrire lévolution dun phénomène, la corrélation de facteurs, la disposition relative des parties dun ensemble. La représentation graphique dune situation de proportionnelle: Une droite passant par le point [0;0] est une représentation graphique dune situation de proportionnalité définie par la fonction linéaire f(x) = ax ou x varie.

71 Des sites pour sexercer en ligne et autres: Pour trouver Math80:

72


Télécharger ppt "Formation pédagogique Amiens 2 Organisation et gestion de données au Cycle 3 Mercredi 17 novembre 2010."

Présentations similaires


Annonces Google