1 Utilisation des scores de propension dans les régressions logistiques : comparaison de 5 méthodes Adrien Français IAB - INSERM Équipe 11 3 novembre 2008.

Slides:



Advertisements
Présentations similaires
Le score de propension (ou méthode de la probabilité prédite)
Advertisements

STATISTIQUE INFERENTIELLE L ’ESTIMATION
Introduction to Impact Evaluation training HSRC, Pretoria, South Africa April 10, 2008 Induction Causale Florence Kondylis Initiative pour lévaluation.
Evaluation de l’effet des traitements en situation observationnelle par utilisation des modèles structuraux marginaux Une application à l’évaluation de.
But de la lecture critique
Risques d’erreur statistique et test statistique
Analyse d’articles étude des biais
Dr DEVILLE Emmanuelle J D V 12/07/2006
Les Biais Item 14°) Relever les biais discutés. Rechercher d’autres biais non pris en compte dans la discussion et Relever leurs conséquences Dr Marie-Christine.
Schémas d’étude.
Disparités de chirurgie élective en Belgique Jessica Jacques Service des Informations Médico-Economiques.
Tableau‚ Summary of Findings‘
Lecture critique MA.
La Régression Multiple
Paul-Marie Bernard Université Laval
Algorithme de lecture critique: validité interne
ELEMENTS DE COURS 1. LERIDON H., TOULEMON L. (1997) – Démographie. Approche Statistiques et dynamique des populations. Paris, Economica. 2. FALISSARD.
Commentaires sur les biais écologiques et les échelles non emboîtées
Clinical Validity of a Negative Computed Tomography Scan in Patients With Suspected Pulmonary Embolism A Systematic Review JAMA 2005 Quiroz R et al Minet.
Didier Bresson DES Cardiologie Jeudi 28 janvier 2010
Toutes les variables étaient mesurées au niveau intervalle et sans erreur Toutes les variables étaient mesurées au niveau intervalle et sans erreur ->
La corrélation et la régression multiple
La régression logistique
La corrélation et la régression
Corrélation Principe fondamental d’une analyse de corrélation
PLACE DU SCORE DE PROPENSION EN EPIDEMIOLOGIE CLINIQUE
Viabilité Réduire, réutiliser, recycler… Conservation Coaches Network Formation des coachs.
Revue systématique et méta analyse
* 16/07/96 Caractéristiques maternelles et infantiles associées à l’accident ischémique artériel cérébral périnatal de l’enfant *
Analyses coût efficacité du dépistage des cancers
Echantillonage pour une Evaluation d’Impact
Séance 8 30 novembre 2005 N. Yamaguchi
Anidulafungine versus fluconazole dans les candidoses invasives. Patrice François Avril 2013.
Rates of medication errors among depressed and burnt out residents: prospective cohort study. BMJ mars 2008, Fahrenkopf et Sectish et al.
Travaux Pratiques Optimisation Combinatoire
Université d’Ottawa - Bio Biostatistiques appliquées © Antoine Morin et Scott Findlay :35 1 Comparaisons multiples Ce qu’elles sont.
Nonpharmaceutical interventions implemented by US cities during the JAMA 8 août 2007 Markel H et al.
TNS et Analyse Spectrale
BIAIS Epidémiologie Essai Test diag. Intervention Sélection Sélection*
Agnès VINCENT DESC Réanimation médicale NICE JUIN 2007.
Intérêt de la résection des métastases hépatiques dans le cancer du sein métastatique.
Université d’Ottawa - Bio Biostatistiques appliquées © Antoine Morin et Scott Findlay :52 1 Comparaisons multiples Ce qu’elles sont.
L’erreur standard et les principes fondamentaux du test de t
* 16/07/96  Prise en charge des hémorragies graves du post-partum après accouchement par voie basse : étude en population dans 106 maternités françaises.
GRANDEURS ET MISÈRES DE LA MÉTA-ANALYSE Jimmy Bourque, CRDE.
Journées du GDR "Statistique et Santé" 13 et 14 novembre 2008
Evaluation des performances des tests diagnostiques en absence de Gold Standard Christophe Combescure Laboratoire de Biostatistique, IURC.
* 16/07/96  Activité physique, masse corporelle et risque de diabète chez les hommes : une étude prospective ECN 2011 sujet 1 José Labarère *
* 16/07/96 Cohorte des travailleurs du nucléaire à Électricité de France : mortalité des agents statutaires sur la période 1968–2003 *
Échantillonnage (STT-2000) Section 5 Types d’erreur de sondage. Version: 22 août 2003.
Dr Vincent BIGE Centre de référence Mucoviscidose de Lyon
Biomarqueurs de stress cardiovasculaire et insuffisance rénale chronique incidente J.E. Ho, S.-J. Hwang, K.C. Wollert, M.G. Larson, S. Cheng, T. Kempf,
L’éfalizumab chez des patients atteints de psoriasis en plaques modéré à sévère Octobre 2009.
Facteurs de risque de contamination par le virus de l’hépatite C. Etude cas-témoin en population générale.
STRUCTURE D ’ UN ARTICLE ORIGINAL Pr Ganry.
Téléphone mobile, risque de tumeurs cérébrales et du nerf vestibuloacoustique: l’étude cas-témoins INTERPHONE en France. Lecture critique d’article Décembre.
ECHANTILLONAGE ET ESTIMATION
LECTURE CRITIQUE D’UN ARTICLE
ETUDES PRONOSTIQUES Pr Ganry.
Statistiques: mesures de liaisons tests d’hypothèse
Académie européenne des patients sur l'innovation thérapeutique Rôle et notions élémentaires des statistiques dans les essais cliniques.
Introduction aux statistiques Intervalles de confiance
Données manquantes et imputations multiples
Lecture critique des essais cliniques. But Juger de : - La validité scientifique - L’intérêt clinique Modifier ou ne pas modifier la pratique.
CHARISMA Analyse post-hoc Complications hémorragiques de l’association clopidogrel + aspirine chez les patients avec maladie vasculaire stable ou avec.
Prise en compte de l'effet centre dans le score de propension: cas des données de survie E. Gayat, J.-Y. Mary et R. Porcher UMR-S 717, Université Paris.
Reliability of electronic recording of waiting times in the emergency department : a prospective multicenter study Judith Gorlicki, Pierre-Alexis Raynal,
Prédiction du niveau de certification des établissements de santé Soutenance de stage 12 septembre 2012 Benjamin Robillard.
Introduction à l’étude d’impact Par : Michel Tenikue (FUNDP)
Transcription de la présentation:

1 Utilisation des scores de propension dans les régressions logistiques : comparaison de 5 méthodes Adrien Français IAB - INSERM Équipe 11 3 novembre 2008

2 Article sélectionné Results of Multivariable Logistic Regression, Propensity Matching, Propensity Adjustment, and Propensity- based Weighting under Conditions of Nonuniform Effect Tobias Kurth, Alexander M. Walker, Robert J. Glynn, K. Arnold Chan, J. Michael Gaziano, Klaus Berger and James M. Robins Harvard (Boston) Paru dans American Journal of Epidemiology en 2006;163:262–270

3 Introduction On ne peut pas toujours travailler avec des données provenant d’un essai randomisé. Efficacité réelle d’un traitement sur un évènement (pneumonie, mort, asthme) dans une étude observationnelle (non randomisée) ? Événement (E) <= Traitement (Z) Nombreux Facteurs confondants (X)

4 Introduction Technique la plus utilisée pour une variable dichotomique :  Régression logistique avec comme facteurs Le traitement Et une sélection de covariables en ajustement Score de propension (Propensity score) Probabilité qu’un individu reçoive un traitement à partir de plusieurs covariables Premiers papiers en 1983 par Rosenbaum  Rosenbaum P, Rubin DB; Biometrika 1983

5 Objectif Comparer différentes méthodes d’utilisation du score de propension pour  Mesurer l’impact du t-PA (tissue plasmogen activator)  Sur la mortalité hospitalière  Chez les patients d’AVC ischémique Résultats divergent selon le type d’étude :  Observationnelles traitement augmente le risque de décès  Randomisées pas de lien établi

6 Base de travail Base allemande  Registre des AVC en Westphalie  42 hôpitaux  Variables disponibles Caractéristiques socio-démographiques, FDR d’AVC dans la littérature, comorbidités, type d’AVC, sévérité, détails sur le traitement…  Étude : 6269 patients avec un AVC ischémique

7 Flowchart 6269 patients avec un AVC ischémique 212 avec t-PA6057 sans t-PA 16% de décès hospitalier 5.4% de décès hospitalier

8 Score de propension Probabilité qu’un individu soit traité basé sur les variables antérieures au traitement  Probabilité conditionnelle d’être traité sachant des covariables  Avantage : on crée une variable à une dimension qui résume X covariables multidimensionnelles  e(X) = P(Z=1/X)

9 Création du score Régression logistique On inclut de nombreux facteurs potentiels  Pas de précision sur la sélection des variables Toutes les variables proposées? Sélection automatique? AIC ? Précautions à prendre  Si on exclut des prédicteurs clés Confusion résiduelle importante  Si on inclut trop de variables et d’interactions Estimation effet traitement biaisé (Harrell)

10 Création du score AUC du modèle 0.94 Propension moyenne  (0.193) T+  (0.070) T-

11 Effet du SP sur la mortalité par strate Trop peu d’effectif pour certaines classes Pourcentages délirants et conclusions quelque peu biaisées OR entre 0.25 à 25.11, p=0.008 à 4df

12 5 Méthodes pour contrôler les FC RL multi variée ajustée (de base) Avec le score de propension (SP)  RL conditionnelle après matching sur le SP  RL avec ajustement sur le SP  2 régressions ajustées pondérées IPTW : probabilité inverse SMR : ratio de mortalité standardisé

13 RL multi variée ajustée E = αZ + βX E : Décès hospitalier Z : traitement t-PA X : l’ensemble des covariables à disposition Pourquoi celles-ci et pas d’autres, on ne sait pas!

14 RL conditionnelle après matching sur le SP Matching entre individus  Avec traitement t-PA  Sans traitement t-PA Selon le SP à plus ou moins 5%  Le plus communément utilisé  Équilibres raisonnables sur les covariables incluses  Limite le nombre d’individus avec t-PA non matchés  Test à ± 10% mais différences non ‘relevant’ Un pour un  Pourquoi pas du 1 pour n ?  Pourquoi pas du n pour m (avec des déciles de SP) ?

15 RL conditionnelle après matching sur le SP (2) Quelle procédure SAS?  Non précisé 212 avec traitement  203 paires  9 non matchés (qui sont-ils?, pourquoi?) Propension moyenne  (0.174) T+  (0.177) T- Les tests réalisés ont-ils été faits en régression logistique conditionnelle ? Pas précisé donc pas sûr!

16 RL avec ajustement sur le SP E = αZ + βe(X) E : Décès hospitalier Z : traitement t-PA e(X) : score de propension  En brut de pommes  En décile

17 Méthode pondérée sur la probabilité inverse IPTW : Inverse Probability of Treatment Weighting  Rubin (2001) On assigne un poids individuel à toutes les observations :  1 / e(X) pour les traités  1 / (1-e(X))pour les non traités  Ce sont les patients avec SP« extrêmes » qui ont un poids important  On obtient ps_weight Proc GENMOD  Fonction de lien logit  Erreurs standards robustes (‘sandwich’)  Option weight ps_weight  On ajoute quand même les FDR de traitement dans le modèle  Bootstrap de taille pour les IC Mesure de l’effet standardisé avec la population globale comme groupe d’étude

18 Méthode pondérée sur le SMR SMR : Standard Mortality Ratio On assigne un poids individuel à toutes les observations :  1 pour les traités  e(X) / (1-e(X))pour les non traités Élevé (>1) quand le SP est > 0.5 Bas (<1) quand le SP est <0.5 Effet standardisé : groupe exposé comme référence SAS : même démarche Mesure de l’effet standardisé en considérant que le groupe des individus traités est la population standard

19 Résultats des différentes méthodes Sans ajustement, l’effet du traitement est surestimé Résultats très différents selon la méthode

20 Les patients avec un SP < 5% Poids énorme pour ces quelques patients (outliers), d’où l’OR à pour IPTW Les patients avec un SP < 5% sont supprimés de l’étude

21 Même chose mais en enlevant les SP<5% Résultats beaucoup plus proches les uns des autres Les patients avec un SP<5% ‘faussaient’ les résultats On perd tout de même 84% de l’effectif!!! Toutes les méthodes donnent un effet non significatif

22 Principales conclusions Beaucoup de variabilité dans les résultats  Méta analyse : RR=1.16 [0.95 ; 1.43]  L’estimation de l’effet dépend de l’inclusion du SP dans le modèle Conclut que aucune des 5 méthodes n’est forcément la meilleure (ne se mouille pas trop!) SMR pondéré semblable au SP matché  Mais SMR utilise toutes les données  Plus de puissance, pas de perte d’individus traités  Résultats les plus proches des essais cliniques Ne garder que les patients avec un SP >5%  Quelque peu arbitraire, légitimité pas vraiment justifiée  Choix arrangeant pour obtenir des résultats comme dans la littérature?  Beaucoup de perte de puissance  Ils ont esquivé dans la discussion le problème de la perte d’effectif monstrueuse Après avoir tenu compte des facteurs confondants  Le t-PA n’a pas d’effet significatif sur le décès

23 Principales conclusions (2) RL ajusté à la fois sur le SP et des variables d’ajustement change l’OR  Crée sans doute des biais  Redondance de plusieurs variables Score de propension permet de résumer l’info en une seule variable  Moins de degrés de liberté utilisé  Se rapproche de la randomisation  Permet de voir la variation du décès selon la classe de SP (impossible avec plusieurs cofacteurs) Attention aux méthodes pondérées  Pose des problèmes quand les poids sont très importants sur un nombre limité d’individus  SP <5% et traités : du à des facteurs confondants non mesurés La conclusion de l’étude dépend de l’inclusion des patients avec un faible SP  Les 2 tableaux de résultats peuvent convenir  Tout dépend de la question qu’on se pose

24 Principales conclusions (3) Quelles variables inclure dans le SP : liées au devenir ou à l’exposition?  Papier parle plus de l’utilisation du SP et non de la sélection des variables  Ils n’ont pas tenu compte des FDR de décès !  SP modélisé uniquement sur les FDR de t-PA ! On a 200 cas  20 variables environ incluses pour le SP Beaucoup tout de même! Calibration du modèle de SP non précisé!

25 Merci de votre attention J’espère que vous avez tout compris ! C’était trop bien… …Mais j’ai rien compris!