Isolation thermique et économies d’énergie

Slides:



Advertisements
Présentations similaires
L’UNIVERS MATÉRIEL Les propriétés de la matière
Advertisements

Le standard maison passive
Lénergie … du désespoir ou la politique de lautruche.
La maison Bioclimatique
28 septembre 2006 Salon INNOBAT – BAYONNE La réglementation : atout ou limite pour léco-construction ?
Isolation thermique et économies d’énergie
PRINCIPE DU SECHAGE PRINCIPE ETUDE DES FACTEURS VISUELLE ECORCE AUBIER
PROPRIETES PHYSIQUES DES BOIS
Les Énergies Les Gaz à Effet de Serre « GES », impacts environnementaux.
Pourquoi une isolation?
Isolation thermique et économies d’énergie
Un gaz qui se détend se refroidit.
Isolation thermique et économies d’énergie
La réalisation de bouquet de travaux
BILAN ÉNERGÉTIQUE D’UN BATIMENT
Isolation thermique d’un bâtiment Informations générales
Revue des techniques en efficacité énergétique et en énergies renouvelables (Version préliminaire) préparé par Ressources naturelles Canada en association.
Les solutions, les professionnels, pour tous vos projets de travaux
Stratégie 2 : refroidissement d'eau par l’air extérieur, eau qui refroidira le bâtiment. Solution : L’eau de refroidissement doit pouvoir être refroidie.
Un peu d’histoire Les réglementations thermiques avant 2000
La géothermie.
L‘infrarouge en tant que chauffage
Énergie primaire < 120 kWh/an.m2
Performance Energétique du Bâtiment TP Maison unifamiliale
Merci et bon visionnage.
Thème : ENVIRONNEMENT ET PROGRES :
Comportement et réaction au feu
Les matériaux isolants phoniques
La chaudière à condensation
SILVERSTAR Verre métallisé bas-émissif
Isolation et rénovation durables
Performance Energétique du Bâtiment Réglementation et application
Nœuds c o n s t r u c t i f s util pédagogique pour la gestion des travaux PEB du bureau au chantier.
ETUDES DES CONSTRUCTIONS
Pompe à Chaleur (PAC).
L'HYGROSCOPICITE Ce cours concerne directement l’étude du
Rôle : Ils diffusent dans la pièce la chaleur nécessaire au maintien de la température ambiante; Cette chaleur sert à compenser les déperditions.
Quelles stratégies "basse énergie" pour le secteur tertiaire ? ...
Vous avez dit : … école passive ?. Quel bâtiment ? Quel chauffage ? Quels résultats ? Vous avez dit : … école passive ?
Le contexte général du Grenelle de lEnvironnement Myriam MICHARD Chargée de mission DD DDEA 78/SE.
Bac S 2013 Amérique du sud EXERCICE I TRANSFERTS D'ÉNERGIE
Chapitre II : Les principales transformations de l’air atmosphérique
Les principes de la thermique
Ce quizz sur la construction durable
Objectifs Comprendre les processus thermodynamiques amenant à
Quelle est, selon vous, le lieu où peut-être installée la batterie ?
LES PROPRIÉTÉS THERMIQUES
PAREX-IT Le 03 décembre 2013 INES Hébert SALLEE
Synthèse n°2.
Application à la Thermoélectricité
Dănilă Alexandru Classe XI ème F, CN Dr. I. Meşotă Braşov Professeur référent : prof.dr.Luciu Alexandrescu.
DEPERDITIONS THERMIQUES ET ISOLATION
La consommation énergétique des bâtiments
Les isolants. Pourquoi faut-il isoler la maison?
Les capteurs solaires plan
L'énergie solaire est transmise à la Terre à travers l'espace sous forme de particules d'énergie, les photons et de rayonnement. L’énergie solaire peut.
Isolation thermique Matériaux isolants.
ECO-FRIENDLY PROJECT REHABILITATION DES BATIMENTS EXISTANTS
La Maison Passive MIM 18_04_07. Ce que la "maison passive" n'est pas : " une maison qu'on ne chauffe jamais " FAUX Il faut la chauffer, mais ses besoins.
Cours météo «avancés» Partie I
ARCHITECTURE ECOLOGIQUE ECO-MATERIAUX
Les matériaux d'isolation
5. Systèmes et auxiliaires 6. Énergie primaire
Transferts d'énergie entre systèmes macroscopiques
dans les centres de formation continue
BTS TC Lycée ARAGO - Perpignan L’Isolation Thermique Lorente Christophe.
Calcul du bilan thermique mensuel d’un bâtiment: LESOSAI.
BPE – Bioenergy and Energy Planning Research Group BPE 0 - Contact Edgard Gnansounou +41 (0) BPE Bioenergy and Energy.
Christophe BTS TC Lycée ARAGO - Perpignan La Pompe à Chaleur 1 ère Partie.
Transcription de la présentation:

Isolation thermique et économies d’énergie Brevet de Technicien Supérieur Technico-Commercial : Spécialité Matériaux du Bâtiment

Introduction: notion de confort Les paramètres suivants entre en jeu dans la notion de confort: la température ambiante (de l’air) la température des parois l'humidité de l'air ambiant les écarts de température les courants d’air le bruit environnant

I- Un peu d’histoire... L’idée d’économiser l’énergie est assez récente, on commence réellement à prendre en la prendre en compte après les chocs pétrolier de 1973 et 1990 à cause de: - La crainte d’un épuisement des ressources - Le réchauffement climatique - La montée du coup de l’énergie Cette problématique s’applique très fortement dans le secteur du bâtiment, (qui représente 40% de la quantité d’énergie en France) où de nombreuses innovations verte ont vu le jour comme les installations à énergie renouvelable (chauffe eau, panneau photovoltaïque), les pompes à chaleurs ou les installations écologique (toiture végétalisée, récupération d’eau de pluie). De plus les progrès réalisés dans le domaine de l’isolation thermique a permis de réduire la consommation d’énergie de chauffage

I- Un peu d’histoire... Réglementation Le secteur du bâtiment est sans conteste le plus gourmand en énergie, c’est pourquoi des réglementations ont vu le jour, La RT (réglementation thermique) 2005 a pris pour principe l’amélioration des performances de la construction neuve d’au moins 15 %, avec une perspective de progrès tous les cinq ans, en vue d’une diminution de 40 % en 2020. La RT 2012, aussi appelée Réglementation thermique « Grenelle Environnement 2012 », s’applique quant à elle aux bâtiments neufs. Chaque construction neuve ne devra pas consommer plus de 50 kWh/m²/an d’énergie en moyenne.

II- Isolation thermique des bâtiments Pourquoi? Réduire la consommation d’énergie de chauffage / de climatisation Préserver l’environnement Améliorer le confort Etre conforme à la règlementation

II- Isolation thermique des bâtiments Principe de l’isolation thermique L’isolation thermique a pour objectif de diminuer les pertes de chaleur dans l’enceinte de l’habitat. Ce n'est pas le seul moyen d'influer sur le confort et les économies d'énergie (équipements, réflexions constructives...) Part des déperditions (en %) à travers les différente parois d’une maison

III- Les grandeurs physiques utilisées Température: Grandeur physique liée à la notion immédiate de chaud et froid. Chaleur: Expression d’un transfert thermique entre deux corps. La chaleur peut se transmettre de 3 manières: Rayonnement: Conduction Effet du soleil sur les parois Contact entre deux milieux de températures différentes Convection Transfert de chaleur par déplacement de fluide

III- Les grandeurs physiques utilisées Les parois sont définies par plusieurs caractéristiques dépendantes des matériaux utilisés: L’épaisseur en cm La densité en kg/m3 La capacité thermique en joule par Kelvin: elle caractérise la capacité d’un matériau à absorber la chaleur lors d’un échange thermique L’effusivité thermique caractérise la capacité d’un matériau à échanger de l’énergie thermique avec son environnement L’inertie thermique représente la résistance d’un matériau au changement de température. Concrètement, un habitat construit avec des matériaux très inerte mettra plus de temps à se refroidir et à se réchauffer sous l’effet d’une baisse de température extérieur. Ces matériaux ont une forte capacité thermique.

III- Les grandeurs physiques utilisées L’hygrométrie est le taux d’humidité de l’air ambiant; Ce critère entre en jeu dans le confort thermique: plus l’air est chaud, plus la quantité d’eau présente dans l’air peut être importante. Or le corps humain évacue 25% de sa chaleur interne par sudation, et un fort taux d’humidité empêche ce processus. L’humidité relative permet de définir la quantité d’eau dans l’air. Par exemple, si l’humidité relative est de 50%, cela signifie que l'air contient la moitié de la quantité maximale de vapeur d'eau qu'il peut contenir. Une humidité relative de 100% correspond à un air saturé en eau. Pour une quantité de vapeur d’eau donné, la température nécessaire pour atteindre une humidité relative de 100% est appelée point de rosée

IV- Matériaux, produits et techniques d’utilisations. Fonctionnement d’un isolant L’isolant a pour vocation de freiner la déperdition ou le gain de chaleur du à la différence de température entre l’extérieur et l’intérieur de l’habitat. Il faut aussi prendre en compte les ponts thermiques, les endroits où l’isolant n’est plus continu et qui provoquent des pertes des chaleurs

IV- Matériaux, produits et techniques d’utilisations. Fonctionnement d’un isolant Pour qu’un isolant soit efficace, il doit être un mauvais conducteur de chaleur, Cette performance thermique est donnée par la résistance thermique: R = e/λ Elle dépend donc de deux paramètres : la conductivité thermique λ en W/(m.K) l'épaisseur de l'isolant e en mètre Epaisseur de matériau pour une résistance thermique équivalente.

IV- Matériaux, produits et techniques d’utilisations. Le coefficient de transmission thermique U caractérise la quantité de chaleur pouvant traverser une surface. U=1/R Plus sa valeur est faible et plus la construction sera isolée. Flux de Chaleur: Le flux de chaleur est une transmission de chaleur (ou énergie thermique) à travers un corps. Le flux de chaleur s'exprime en W/m2. 𝐽s,i→e = U* (Ti-Te)

Exercice Quel est l’unité de R, la résistance thermique? En déduire celle de U, puis de Js. J’ai à ma disposition du polystérène expansé dont la conductivité thermique (λ) est de 0,035 W/(m.K). Le constructeur impose que l’isolant ai un coefficient de transmission thermique (U) inférieur à 0,7. Quel épaisseur minimal d’isolant dois-je mettre pour atteindre cette valeur? Correction: R est en m².K/W U est en W/(m².K) Js est en W/m² R=e/λ, donc U= λ/e Pour que U<0,7, il faut λ/e <0,7 Soit e>λ/0,7 L’épaisseur d’isolant doit être supérieur à 5cm

IV- Matériaux, produits et techniques d’utilisations. Technique d’isolation Il y a trois techniques différentes pour réaliser l’isolation thermique d’un mur. Chacune d’entre elles dispose d’avantages et d’inconvénients Isolation extérieur Isolation intérieur Isolation répartie isolant ext int ext int ext int mur

IV- Matériaux, produits et techniques d’utilisations. Technique d’isolation Isolation intérieur Isolation extérieur Isolation répartie Utilisation Si le ravalement est récent Si le ravalement est ancien Profite de l’inertie du mur Prévoir dès la conception du projet Compromis entre les techniques Efficacité Bonne Humidité et condensation à surveiller Excellente Suppression des ponts thermiques Pont thermique limité Installation Possibilité de le faire soi-même Installation par un pro Autorisation administrative nécessaire Très simple, le même produit sert à construire et à isoler Prix 30 à 60€/m² 40 à 80€/m² 80 à 120€/m² mais comprend le mur+isolation

IV- Matériaux, produits et techniques d’utilisations. Exemple d’isolation L’isolant est ici placé entre le revêtement de façade et le mur porteur. Quel est le technique d’isolation utilisé ici?

IV- Matériaux, produits et techniques d’utilisations. Certification ACERMI L’ACERMI (association pour la certification des matériaux isolants) est un organisme dont le rôle est de garantir la véracité des caractéristiques annoncées par le fabriquant et de les réévaluer périodiquement. Elle s'appuie sur une procédure bien définie : Vérification du niveau du système qualité du fabricant, Prélèvement de produits en usine deux fois par an, Contrôles des produits prélevés par les laboratoires (CSTB et LNE) du certificateur.

IV- Matériaux, produits et techniques d’utilisations. Certification ACERMI Les caractéristiques des isolants sont classés en 5 catégories sur une échelle d’efficacité de 1à 5, 5 étant la meilleur performance, I: Propriétés mécaniques en compression S: Comportement à la déformation O: Comportement à l’eau L: Comportement à la flexion E: Comportement au transfert de vapeur d’eau

IV- Matériaux, produits et techniques d’utilisations. Choisir son isolant D’après ce qui a été dit précédemment, différents critères entrent en jeu dans le choix d’un isolant: Sa conductivité thermique caractérisant son pouvoir isolant Sa longévité Son prix Ses contraintes de mise en place Ses caractéristiques face au feu et à l’humidité

IV- Matériaux, produits et techniques d’utilisations. Type d’isolant Isolants Minéraux: Fabriqués à partir de matières naturelles inorganiques Ex: la laine de verre, la laine de roche, le verre cellulaire, l’argile expansée Isolants Organiques: Fabriqués à partir de matières végétales ou animales Ex: Le liège, la fibre de bois, la chanvre, la laine de mouton Parmi les isolants organiques, les isolants biosourcés (fibre de bois, chanvre,,,) ont des propriétés écologiques exceptionnelles, Isolants Synthétique: Utilise des matériaux non présent dans la nature (plastique, polystyrène etc...) Ex: Polystyrène expansé, polyuréthane, La mousse phénolique Isolant mince: Epais de quelques millimètres à quelques centimètres, il est constitué d’une ou plusieurs couches d’aluminium assemblées entre elles et de couches intermédiaires de différentes natures : feutre, ouate, mousse, etc.

Quelques exemples d’isolants courants Conductivité thermique Forme longévité Prix Divers Laine de verre ~0,035 PanneauxRouleaux - 3 à 8€/m² Polluant Laine de roche ~0,036 Panneaux ++ 5 à 10€/m² Plus résistant à l’eau Liège expansé ~0,040 Plaque ++++ 10 à 30€/m² Insensible à l’eau Laine de mouton ~0,038 Vrac, Rouleaux + 15 à 20€/m² Faible inertie, absorbe l’eau Polystyrène expansé 10€/m² Fragile au feu, mauvaise isolation phonique Polyuréthane ~0,026 Mousse +++ 20€/m² Polluant, insensible à l’eau

Quelques exemples d’isolants courants (suite) Conductivité thermique Forme longévité Prix Divers Isolant mince Fort mais pouvoir réflecteur Rouleaux + 5 à 10€/m² Polluant Facile à poser Peinture isolante 0,55 bombe ++ 15€/m² Épaisseur infime Brique Monomur 0,15 Brique constructive ++++ 50€/m² Mise en place simple Béton cellulaire 0,11 Mur complet 20 à 45€/m²

Exemple d’une maison Le but de l'exemple est de concevoir l'isolation de ce bâtiment.