MAGNÉTISME ET STRUCTURE MOLÉCULAIRE

Slides:



Advertisements
Présentations similaires
Les aimants possèdent deux pôles opposés (N ou nord et S ou sud)
Advertisements

1 Chapitre 5 : Les éléments de transition I / Les métaux de transition : Définition : éléments avec sous-couche d incomplète ( exception : Cu : 3d 10 4s.
UV ORGA 1 EDIFICE MOLECULAIRE F.Nivoliers.
Gonzalez B. | Lycée Emile LOUBET | 1°S
LES BASES DE L’ELECTRICITE
Classification Périodique
Rappels propriétés des matériaux Bloc 5. Apparition dun moment dipôlaire charges liées Présence de charges liées, qui ne se déplacent pas librement avec.
Les colorants ioniques
Oxydoréduction en chimie organique
Plan du cours Introduction: historique
LE CHAMP MAGNETIQUE 1 Mise en évidence du champ magnétique
Des atomes aux ions.
Susceptibilités magnétiques uniformes
La géométrie des molécules
Chimie 1 : la mesure en chimie Chapitre 2 : solutions électrolytiques.
DIFFRACTION DES ÉLECTRONS ET DES NEUTRONS
Constantes diélectriques – polarisation moléculaire
DIFFRACTION DES RAYONS X
Une autre vision du vide
1-2 STRUCTURE DE LA MATIÈRE
Chapitre 4 Les gaz.
Quantité de matière. En vitesse, au travail ! En 23 diapositives.
Les formules moléculaires
La résonance magnétique
Le magnétisme.
LA SYMÉTRIE DES MOLÉCULES
Fonctions de partition
STPI/RG mai10 1- Rappel : les équations de Maxwell dans le vide 3- Electromagnétisme dans les conducteurs 5- Electromagnétisme dans les milieux magnétiques.
La stoechiométrie : calculs chimiques
Rotation des molécules polyatomiques
Diffusion magnétique des neutrons
Diffusion magnétique des neutrons
La théorie des collisions
Patrick CHAQUIN Laboratoire de Chimie Théorique UMPC (site d’Ivry)
Chapitre 5 Vibration-rotation des molécules diatomiques
Le magnétisme atomique
LES NIVEAUX D’ÉNERGIE DES ATOMES DÉDUITS DES SPECTRES ÉLECTRONIQUES
La structure des molécules
La théorie de la liaison et la géométrie moléculaire
L’atome d’hydrogène n l ml ms (eV) État fondamental Énergie E1
Les propriétés magnétiques
Chapitre 9 INFLUENCE D’UN CHAMP MAGNÉTIQUE SUR LES NIVEAUX D’ÉNERGIE QUANTIFICATION SPATIALE Guy Collin,,
Théorème d’Ampère Hugues Ott
Electrostatique- Chap.2 CHAPITRE 2 CHAMP ELECTROSTATIQUE Objectif :
Unité 1 – Les Atomes, les Éléments, et les Composés
PHYSIQUE QUANTIQUE Ph .DUROUCHOUX.
Physique atomique Chapitre 11
METHODE : Les unités et calculs indispensables en chimie
Electrostatique- Chap.1
Le magnétisme.
CHAPITRE I LE MODELE QUANTIQUE DE L'ATOME.
Les substances pure, les éléments et les composé
Électricité et magnétisme (203-NYB) Chapitre 2: Le champ électrique
Révision: Intro à la chimie - les composés ioniques et moléculaires Page 109 #1, 3-7.
Les notions vues en seconde
TRANSFERT COUPLE DE CHALEUR ET DE MASSE
Chapitre 9: Les débuts de la théorie quantique
PREVISION DE LA GEOMETRIE DES MOLECULES
D. Les facteurs influant sur la vitesse d’une réaction et la théorie des collision La vitesse d’une réaction chimique est influencée par les facteurs suivants:
Électromagnétisme dans les milieux
Hybridation sp3
L’organisation de la matière
CHAPITRE III LE MODELE QUANTIQUE DE L'ATOME.
CHAPITRE 12 : Transferts thermiques
SCH3U Module 1: La matière et les liaisons chimiques
S1 Champ magnétique.
LA LIAISON COVALENTE.
Configuration électronique des atomes
Les composés chimiques. Les Composés Chimiques Nous savons que les atomes d’éléments variés se joignent ensemble pour former des molécules et des composés.
La matière et le magnétisme n d’ou viennent les propriétés magnétiques de la matière ? D’après une conférence de Michel PIEUCH Les matériaux magnétiques.
Transcription de la présentation:

MAGNÉTISME ET STRUCTURE MOLÉCULAIRE Chimie théorique Chapitre 14 MAGNÉTISME ET STRUCTURE MOLÉCULAIRE Guy Collin, 2012-06-29

MAGNÉTISME ET STRUCTURE MOLÉCULAIRE La symétrie moléculaire a aussi son influence sur le magnétisme de la molécule. La susceptibilité magnétique dépend en particulier du nombre d’électrons non appariés. Sous quelles formes peut-on traduire la susceptibilité magnétique ? Comment la mesure-t-on ? Quelles sont les conséquences sur les agencements d’orbitales dans les cas de métaux de transitions qui ont plusieurs électrons célibataires ?

Rappel des propriétés de l’atome On sait que l’atome peut présenter deux moments magnétiques d’origines différentes : le moment diamagnétique que l’on peut appeler moment de distorsion puisqu’il est en fait une perturbation de nuage électronique créé par le champ extérieur ; le moment paramagnétique qui résulte d’un moment magnétique propre. Il peut être orienté par le champ extérieur. Il en est de même pour les molécules.

Paramagnétisme de l’atome Le paramagnétisme a lui-même deux origines : la rotation des électrons sur leur orbite (moment orbital) ; la rotation des électrons sur eux-mêmes (moment de spin). Pour qu’une molécule soit paramagnétique, il faut que le moment magnétique résultant de ses atomes ne soit pas nul (L ou S  0).

Le magnétisme des solides Beaucoup des solides sont diamagnétiques même ceux qui ont des atomes qui ne sont pas dans l’état fondamental 1S0. L’association des atomes dans les cristaux se fait souvent de façon à annuler les moments magnétiques entre atomes voisins. Le moment propre de l’ensemble est alors nul et le solide est seulement diamagnétique.

Le diamagnétisme des molécules Le phénomène de diamagnétisme est universel : il existe donc dans les molécules. La combinaison de 2 atomes paramagnétiques conduit souvent à une molécule diamagnétique : combinaison de 2 spins antiparallèles 2 N (4S3/2)  N2 (1S) combinaison de 2 moments orbitaux non nuls C (3P0) + O (3P2)  CO (1S) La grande majorité des molécules simples sont dans l’état électronique 1S et sont donc diamagnétiques.

Le paramagnétisme des molécules Il existe des associations exceptionnelles conduisant à des molécules paramagnétiques : 2 O (3P2)  O2 (3S) O (3P2) + N (4S3/2)  NO (2P) Le paramagnétisme existe cependant de façon normale pour les molécules comprenant des atomes dont les couches intérieures sont incomplètes (cas des éléments de transition).

La susceptibilité magnétique Le moment magnétique, I, par unité de volume est : I = mo c H où mo = perméabilité magnétique du vide , mo = 1,25664  10-6 kg·m·s-2·A-2 = 4 p 10-7 N·A-2 c = susceptibilité par unité de volume (pas d’unités); mo H = champ magnétique efficace = B (l’induction : unité tesla (T)). On peut séparer les effets para et diamagnétiques en introduisant les susceptibilités correspondantes cP et cD : I = (cD + cP) mo H .

La susceptibilité magnétique molaire Définissons une susceptibilité magnétique molaire totale : Ce coefficient a la dimension de M / r , c’est-à-dire un volume. La susceptibilité molaire est la somme des susceptibilités diamagnétique et paramagnétique molaires :

Rappels : la susceptibilité magnétique atomique Les susceptibilités diamagnétique et paramagnétique molaires de l’atome sont : rayon moyen de l’orbite constante de CURIE Ces résultats sont applicables sans modification à la molécule.

La susceptibilité magnétique des molécules est étendue aux orbites moléculaires. cD représente bien un effet de distorsion sur la molécule alors que cP représente un effet d’orientation des moments magnétiques moléculaires permanents. En résumé, tout comme dans le cas des propriétés atomiques :

La susceptibilité magnétique d’une substance D’une manière générale, on doit obtenir : la mesure de la susceptibilité totale ; la séparation de l’effet diamagnétique et de l’effet paramagnétique ; la connaissance du moment magnétique propre de la molécule. Diamagnétisme et paramagnétisme sont tous deux intéressants pour établir la structure moléculaire.

Centre du champ magnétique La balance de GOUY Connexion à la balance Tube de GOUY Centre du champ magnétique Balance analytique Thermomètre Échantillon nord sud Électroaimant

L’usage de la balance de GOUY Si la susceptibilité volumique de l’air est c2 et celle de l’échantillon c1 la force exercée sur le barreau peut se calculer (en SI) : Si H2 est négligeable vis-à-vis de H1 et si de plus c2 est petit devant c1, alors : Note : S est la surface de section de l’échantillon.

Effet de substances solides sur un champ magnétique Champ magnétique dans le vide. N S Champ magnétique et substance diamagnétique. N S Champ magnétique et substance paramagnétique. N S

Susceptibilités diamagnétiques molaires d’atomes

Incréments de liaison pour la susceptibilité diamagnétique

Susceptibilités diamagnétiques de quelques substances

Le paramagnétisme La méthode de variation de température est difficile à mettre en œuvre. On préfère calculer la susceptibilité paramagnétique en faisant la différence entre la susceptibilité totale mesurée et la susceptibilité diamagnétique calculée à partir de la loi d’additivité. Le paramagnétisme est généralement associé au nombre d’électrons non appariés.

Le paramagnétisme Si une molécule possédant n électrons célibataires le spin total est S = n/2. La valeur du moment cinétique en unité h/2p est donc [S (S + 1)]1/2. La valeur du moment magnétique mesurée en magnétons de BOHR sera donc : 1 magnéton de BOHR en SI mB = 9,273 2  10-24 A·m2

Moment magnétique et électrons célibataires

Susceptibilités paramagnétiques de quelques substances * : diamagnétisme seulement.

Magnétochimie : les ions Fe++ et Fe+++ 3d 4s 4p e- µB      5 5,9      4 4,9 Fe++ La mesure de la susceptibilité permet de faire la distinction entre les ions ferriques Fe+++ et les ions ferreux Fe++. Les deux valeurs sont suffisamment éloignées l’une de l’autre pour permettre l’identification de l’ion.

Quelques complexes du fer Fe isolé 3d 4s 4p e- µB      4 4,9       5 5,9 Fe+++ dans [FeF6]3- Fe dans [Fe(CN)6]3-          1 1,7 Orbitales octaédriques : hybridation d2sp3

Le cas des complexes du nickel Ni isolé 3d 4s 4p e-      2  Ni++      2      2 Ni++ dans [Ni(NH3)4]++     Orbitales tétraédriques : hybridation sp3 Ni dans [Ni(CN)4]2-         Orbitales co-planaires : hybridation dsp2

Structure possible du fer nonacarbonyle CO Fe chaque groupe CO cède une paire d’électrons au fer. Dans cette hypothèse le complexe devrait être paramagnétique : il y a un électron célibataire sur chaque atome de fer.

Le fer nonacarbonyle Fe isolé 3d 4s 4p             Électrons des CO      Fe+++ dans Fe2(CO)9     En réalité, le complexe est diamagnétique : il n’y a pas d’électron célibataire. Les atomes de fer sont beaucoup plus proches l’un de l’autre.

Le fer nonacarbonyle est diamagnétique CO Fe Cette structure est confirmée par l’analyse aux rayons X.

Conclusion On distingue deux sortes de susceptibilité : la susceptibilité diamagnétique et la susceptibilité paramagnétique. La première est générale et constitue une propriété additive du nombre d’atomes avec corrections pour la nature de certaines liaisons. La seconde n’apparaît qu’en présence d’électrons non appariés.