Modèle Différences finies Eléments finis Application Chap Hydrogéologie Chapitre IV : Notions de modèles hydrogéologiques Sylvain Payraudeau 1ère.

Slides:



Advertisements
Présentations similaires
Sous la responsabilité d’Emmanuel MOUCHE
Advertisements

Plan du cours Introduction - Cycle de l’eau
Notions de modèles hydrogéologiques
Notions de modèles hydrogéologiques Adrien Wanko & Sylvain Payraudeau
Programme pour l’amélioration des connaissances géologiques et Hydrogéologiques de l’Oligocène dans le secteur du champ captant des laNdEs du MEdoc PHONEME.
GDR MoMaS, Marseille, 14/11/2003 Études des incertitudes liées aux stockages des déchets nucléaires Anca Badea, Olivier Gipouloux.
Couche limite atmosphérique
PRESENTE PAR: KASHAMA LUBEMBE Dieudonné.
Analyse des données de gravimétrie spatiales GRACE et de leur potentiel pour l’observation des différents stocks d’eau sur le bassin de la Garonne Présenté.
Réseau d’Observation et de prévention du DÉnoyage de l’Oligocène au sud de l’agglomération bordelaise Bilan du projet Commission Locale de l’Eau BRGM Aquitaine.
BENCHMAK Chimie - Transport Jérôme CARRAYROU Institut de Mécanique des Fluides et des Solides Strasbourg.
Proportionnalité Les connaissances que l'enseignant doit maîtriser à son niveau Présentation réalisée à partir de l'ouvrage de Roland Charnay et Michel.
Chapitre 4: Variation dans le temps  Les données : audience totale en milliers (tableau 4.1, p. 47, extrait) o Origine : enquête sur les habitudes d’écoute.
Thème 6.  Introduction – processus électrochimiques et transfert de matière  Diffusion en électrolytes, cinétique de diffusion  Diffusion et convection,
Séquence 1 : Problème posé : A quoi sert une éolienne et de quels éléments est elle constituée ? énergie renouvelable classe de 4° Analyse de l'OT.
Caractérisation des pressions : azote, pesticides, prélèvements Séminaire DOM 26 mars 2012.
NF04 - Automne - UTC1 Version 09/2006 (E.L.) Cours 5-a Problèmes scalaires instationnaires d’ordre 1 en temps Domaines d’application Notions de schémas.
NF04 - Automne - UTC1 Version 09/2006 (E.L.) Fiche « succincte » des mini-projets Portance d’un profil porteur (aile, hydrofoil …) Acoustique (automobile,
1Cours d'irrigation. Le bilan hydrique I= P + R + ETR – D I = Irrigation R = la réserve du sol en eau ETR = demande en eau propre à la culture D = perte.
Et maintenant, le mode : fastoche !
HYDROGEOLOGIE Définitions
Suites ordonnées ou mettre de l’ordre
Chapitre 4: Variation dans le temps
TP 4: DE LA CARTE A LA COUPE GEOLOGIQUE EN SYSTEME MONOCOUCHE
Chapitre 4: Variation dans le temps
Gaz de Schiste : opportunité ou danger ?
Doctorants/CDD/Vacataires
Résolution de problèmes au cycle 3
Identification des lois de comportement des tôles
S. Briot1 and V. Arakelian2 1 IRCCyN – Nantes 2 INSA – Rennes
Simulation des nanostructures à base de nanorubans de graphène
Evolution des aquifères avec le changement climatique
METHODE DE L’ACV Réalisé par : MAKHLOUFI Mohamed ROKHOU Alae
Les plans de mélange Les plans d’expérience : Présentée par :
Plans d’expériences: Plans de mélanges
Plans d’experiences : plans de melanges
Carte d’aide à la décision de l’aquifère de Ras El Ain ( Type Raster)
Simulation des phénomènes anthropiques
International Congress on Energetic and Environmental Systems (IEES)
L’APPROCHE SMEARED FRACTURE :
GEOCHIMIE DES EAUX DU SYSTEME AQUIFERE DU BASSIN DE SOUASSI
Présentation du cours de Statistique de première année AgroParisTech
Modélisation Spatio-temporelle de la pluviométrie " Application du prédicteur Filtre de Kalman":Cas du bassin versant de Cheliff -Algérie- Présentée par Samra Harkat
Mercredi 1 er decembre 2010 Impact hydrodynamique d’un stockage géologique de CO 2 de taille industrielle Gestion des conflits d’intérêts avec d’autres.
Passer à la première page Initiation au calcul des structures dans le domaine plastique Elasto - plasticité en petite transformation Cours.
Modélisation aérothermique des machines tournantes
Systèmes aquifères et nappes d’eau souterraines Types d’aquifères Aquifères poreux Aquifères fissurés Aquifères karstiques Types de nappes Nappes libres.
Modélisation et résolution du problème de contact mécanique et son application dans un contexte multiphysique Soutenance de thèse de doctorat en ingénierie.
Comprendre l’écoulement de l’eau dans les roches grâce à l’informatique Jocelyne Erhel L’équipe SAGE Le département de Géosciences.
1/15 STABILITE 1)- NOTION DE STABILITE 2)- CONDITIONS DE STABILITE.
La méthode scientifique
AIAC GEET-12 Année : Régulation Industrielle: Programme M.BAHATTI.
Position, dispersion, forme
1 CHAPITRE: GESTION DES STOCKS. 2 Plan Plan IntroductionDéfinitionNature du stockLes niveaux des stocks Suivi du stock: Méthodes d’approvisionnement Conclusion.
Par CARDENAS CASTILLERO, Gustavo Enrique.
Contribution du LHyGeS
AquiFR : Réunion d’avancement
Projet Aqui-FR État d’avancement sur l’adaptation de Marthe et les applications régionales Dominique THIÉRY, Nadia AMRAOUI Janvier 2015 Direction.
Modèle de nappe d’eau souterraine
Application des équations primitives à l’écoulement turbulent
Les modèles de Karst disponibles au BRGM
Audrey Gervereau, Métis, stage M2
1er FORUM HYDROMETEORLOGIQUE -- AFRIQUE CENTRALE --
Présentation de HPP_Inv
Veuillez éteindre votre téléphone ou le mettre en mode silencieux.
Estimation des conditions initiales par inversion
Présentation du cours de Statistique de première année AgroParisTech
STATISTIQUE INFERENTIELLE LES TESTS STATISTIQUES.
Couche limite atmosphérique
Transcription de la présentation:

Modèle Différences finies Eléments finis Application Chap Hydrogéologie Chapitre IV : Notions de modèles hydrogéologiques Sylvain Payraudeau 1ère année ( )

Modèle Différences finies Eléments finis Application Chap Outils de gestion de la ressource en eaux souterraines Outils analytiques : échelle locale Modèles hydrogéologiques : échelle régionale Quantitatif : Prédire l’impact d’un pompage sur l’aquifère (chapitre II). Qualitatif : Prédire le transport d’une pollution (stratégies de dépollution d’un aquifère) (chapitre III).

Modèle Différences finies Eléments finis Application Chap Plan Notion de modèle Différences finies Eléments finis Application d’un modèle hydrogéologique : gestion de l’eau

Modèle Différences finies Eléments finis Application Chap Qu’est-ce qu’un modèle ? Représentation simplifiée d'un système complexe (tel le cycle de l'eau) Qu'est ce qu'un modèle ? et à quoi sert un modèle ? = indissociables c’est le problème posé qui conduit à la création/utilisation d'un modèle ce sont les hypothèses posées qui conditionnent le choix de la modélisation. Qualité d'un modèle : adéquation des résultats avec les objectifs. Caractère prédictif Synthèse des connaissances sur une problématique Vision simplifiée d'un système = réductionniste Simplifications = f(hypothèses) pertinentes à une échelle spatiale et temporelle donnée. Domaine de validité = limite le champ d’application

Modèle Différences finies Eléments finis Application Chap Modèle Variables d’entrée (de forçage) indépendantes Variables de sortie dépendantes Paramètres Caractéristiques du système Qu’est-ce qu’un modèle ?

Modèle Différences finies Eléments finis Application Chap Modèle hydrogéologique Modèle Variables d’entrée (de forçage) Indépendantes : Pluie, ETP Variables de sortie dépendantes : hauteur d’eau, vitesse, concentration Paramètres : Porosité, Conductivité hydraulique, Géométrie du réservoir Nappe libre/captive Caractéristiques du système + état initial + conditions aux limites + sollicitation (source/puits), contact rivière, …

Modèle Différences finies Eléments finis Application Chap Modèle Caractéristiques du système Lois de conservation : Conservation de la masse Loi de Darcy Loi de Fick, … Loi de diffusivité Ex : Ecoulement dans une nappe captive avec T isotrope T. hxhx xx + hyhy yy + Q = S. htht Eq 2.42 Conditions initiales Conditions aux limites Modèle hydrogéologique

Modèle Différences finies Eléments finis Application Chap Donnés nécessaires et calage du modèle Conductivité hydraulique (K) : Connue qu’en quelques points (interprétation de pompage), pouvant être modifier lors du calage du modèle (paramètre d’ajustement). Débits d’échange et d’alimentation (Q + infiltration) : déterminés le plus précisément possible (difficulté de l’estimation de la recharge Pluie – ETP – Ruissellement). Calage de la transmissivité (T) pour obtenir les charges observées (H) avec les débits pompés estimés. Coefficient d’emmagasinement (S) : Uniquement si besoin de modéliser en régime transitoire. Mal connu, seulement en quelques points (essais de pompage) En général : géométrie de l’aquifère (+) K, colmatage des cours d’eau et la recharge mal connus (-)

Modèle Différences finies Eléments finis Application Chap Conditions aux limites Conditions aux limites : 3 types (mathématique) 1 - Conditions de Dirichlet : charge (h) imposée : h lim = f(t) Contact nappe-rivière 2 - Conditions de Neumann : première dérivée de la charge imposée donc flux imposé Limites flux nulles (substratum basal ou latéral) Limites flux imposés (recharge de nappe, prélèvement par puits) 3 - Conditions de Cauchy : h et hnhn hnhn lim = f(t) hnhn a. h + b. lim = f(t) hnhn Contact nappe-rivière – au travers d'une limite semi-perméable

Modèle Différences finies Eléments finis Application Chap Modèle Gardenia (global – conceptuel) Spatial : Approche globale (réservoirs)

Modèle Différences finies Eléments finis Application Chap Spatial : mono-couche (2D) Intégration des propriétés (K, T) sur l'épaisseur de la couche Aquifère (vue de dessus)

Modèle Différences finies Eléments finis Application Chap Hydroexpert Hypothèses : 1 - Empilements d’aquifères séparés par des semi-perméables 2 – Ecoulements bi-dimentionnels horizontaux (aquifères) 3 – Ecoulements verticaux (semi- perméables) 4 – Les semi-perméables sont soit réels (marnes) soit artificiels pour différencier 2 aquifères 5 – Les semi-perméables sont non capacitifs (permettent le passage entre 2 aquifères mais ne contient pas un volume d’eau conséquent) Spatial : Aquifère complexe (3D)

Modèle Différences finies Eléments finis Application Chap Situation réelle Représentation par le modèle Hydroexpert Aquifère complexe (3D)

Modèle Différences finies Eléments finis Application Chap Grille régulière Aquifère (vue de dessus) Sur chaque maille : Transmissivité (T) Coefficient d'emmagasinement (S) Débit prélevé/injecté (Q) Infiltration par la pluie efficace (si une seule couche) Apport de la couche du dessus (si multicouche)  Niveau piézométrique Méthode des différences finies : discrétisation spatiale

Modèle Différences finies Eléments finis Application Chap Discrétisation spatiale : tailles et nombres de mailles Taille (et donc nombre) des mailles : Précision souhaitée sur les calculs Contours +/- sinueux des limites Nombres et éloignements des puits Capacité de l'ordinateur Taille de 5 m (étude d’une digue) à 5 km (étude régionale) Nbre de mailles  1000 à

Modèle Différences finies Eléments finis Application Chap Calcul par maille Méthode des différences finies : ex nappe captive en régime permanent a N S O E C  flux de masses entrantes/sortantes = masse entrante/sortante a N S O E C ? Q H C = inconnu Flux de masse quittant C vers O : n M = superficie du côté. vitesse. Masse volumique Bilan en eau sur maille centrale : M = a.e. (- K. ).  = - a. . T. hnhn hnhn

Modèle Différences finies Eléments finis Application Chap Flux quittant le côté vers E = - a. . T. = - . T. (H E - H C ) H E - H C a H O - H C a H S - H C a H N - H C a Approximation des dérivées par différence : Flux quittant le côté vers O = - a. . T. = - . T. (H O - H C ) Flux quittant le côté vers S = - a. . T. = - . T. (H S - H C ) Flux quittant le côté vers N = - a. . T. = - . T. (H N - H C ) hnhn Flux du terme puits/source (Q) = -  Q T. (H E – H C ) + T. ( H O – H C ) + T. ( H N – H C ) + T. ( H S - H C ) = Q T. (H d – H C ) = Q d = 1  si pas de terme puits/source T. (H d – H C ) = 0 d = 1  d = directions (O, E, S, N) 4 4 Calcul par maille

Modèle Différences finies Eléments finis Application Chap a S O E C Ex. limite à flux imposé (au nord) : puits T. (H E – H C ) + T. ( H O – H C ) + Flux N + T. ( H S - H C ) = Q T. ( H N – H C ) remplacé par Flux N Ex. limite à charge imposé (au nord) : rivière T N. ( H N – H C ) T. (H E – H C ) + T. ( H O – H C ) + T N. ( H N – H C ) + T. ( H S - H C ) = Q Résolution : 5 inconnues pour 5 mailles Soit r nombre de mailles dans le maillage et p nombre de mailles avec conditions aux limites Matrice de ce système est régulière (inversable avec solution unique) si p >=1 Calcul aux limites

Modèle Différences finies Eléments finis Application Chap cas de figure : Rivière 1 Rivière 2 L h1h1 h2h2 e K Niveau piézométrique Surface du sol x z Cas 1 : K est homogène et e constant sur l'ensemble de la nappe Si K et e = constante  T = Constante T. (H d – H C ) = 0 d = 1  (H d – H C ) = 0 d = 1  H C = H O + H E + H N + H S 4 d = directions (O, E, S, N) 4 4 Calcul avec K constant

Modèle Différences finies Eléments finis Application Chap H C = inconnu Charge imposé Flux nul H 1 = 6m H 2 = 4m HC=HC= H O + H E + H N + H S 4 H C = H E + H E + H N + H S 4 Exemple de calcul

Modèle Différences finies Eléments finis Application Chap H C = inconnu H 1 = 6m H 2 = 4m Stabilisation de h : (10 -2 mm) 245 itérations Exemple de calcul

Modèle Différences finies Eléments finis Application Chap Cas 2 : K n'est homogène et/ou e n'est pas constant sur l'ensemble de la nappe : T variable L1L1 h1h1 h2h2 e K2K2 Surface du sol x z K1K1 L2L2 Domaine 1 Domaine 2 Calcul de T par mailles  calcul de T moyen par côté (T EC ) T EC. (H E – H C ) + T OC. ( H O – H C ) + T NC. ( H N – H C ) + T SC. ( H S - H C ) = 0 H C = T EC. H E + T OC. H E + T NC. H N + T SC H S T EC + T OC + T NC + T SC Calcul avec K variable

Modèle Différences finies Eléments finis Application Chap Régime transitoire : a². S. H t + dt - H t dt T. (H d – H C ) + Q + infiltration = d = 1 directions (O, E, S, N)  4 Régime permanent : T. (H d – H C ) + Q + infiltration = 0 d = 1 directions (O, E, S, N)  4 a². S. T. (H d – H C ) + Q + infiltration = d = 1 directions (O, E, S, N)  4 htht Approximation exacte si dt infiniment petit Calcul en régime transitoire

Modèle Différences finies Eléments finis Application Chap si dt trop grand <> solution analytique Empiriquement : dt <= 100. S. a² 4. T S : coefficient d’emmagasinement T : transmissivité a² : aire de la maille Choix du pas de temps de calcul (dt)

Modèle Différences finies Eléments finis Application Chap H 1 = 6m H 2 = 4m Etat initial connu (t = 0) Modélisation de l’effet d’un pompage jusqu’au régime permanent Calcul en transitoire

Modèle Différences finies Eléments finis Application Chap Attention à l’exploitation du modèle : ex. charge (H) dans un puits En général : a (côté de la maille) >>> rayon d’un puits Pour comparer H simulée et H observée dans un puits : facteur de correction arParP H maille – H Puits = ln - Q 2. .T 22 a : côté de la maille r P : rayon du puits T : transmissivité de la maille Exploitation du modèle aux différences finies

Modèle Différences finies Eléments finis Application Chap discrétiser le domaine en petits éléments (triangle) 2- calculer la variable (h) sur chaque nœud 3- interpoler linéairement entre les sommets pour calculer h h ? h Aquifère (vue de dessus) A A' A h x A Si forte variabilité ( Diminution de la taille des éléments au voisinage de la rivière Principe

Modèle Différences finies Eléments finis Application Chap Aquifère (vue de dessus) Sur chaque noeud : Transmissivité (T) Coefficient d'emmagasinement (S) Débit prélevé/injecté (Q) Infiltration par la pluie efficace (si une seule couche) Apport de la couche du dessus (si multicouche)  Niveau piézométrique Mesures représentatives ? Aquif è re Edwards (US) : Données nécessaires

Modèle Différences finies Eléments finis Application Chap Exemple d'application d'un modèle hydrogéologique Utilisation des aquifères captifs de l’Albien et du Néocomien (bassin parisien) pour alimenter la population de la zone agglomérée d'Ile de France en eau potable en cas de scénario catastrophe (Roche, ENPC) Coupe géologique schématique du bassin sédimentaire de Paris (formation lithostratigraphiques) (AESN)

Modèle Différences finies Eléments finis Application Chap Besoins ultimes en eau potable ? 20 l.hab -1.jours -1 (15 domestiques, 4 hôpitaux et 1 agroalimentaire) 11 millions d'habitants  m 3. jours -1 Capacités actuelles des forages dans l'Albien et le Néocomien ? 33 forages : débit actuel m 3. jours -1 (20 million de m 3. an -1 ) débit maximum de m 3. jours -1 (38 million de m 3. an -1 ) Complément nécessaire  m 3. jours -1 En utilisant un ratio d'un puits de 150 m 3. h -1 par zone de hab.  32 puits (finalement 37 puits retenus)

Modèle Différences finies Eléments finis Application Chap Distribution de la transmissivité de l’Albien (m²/s) ajustée après calage (AESN) Données requises/calage

Modèle Différences finies Eléments finis Application Chap Distribution de la transmissivité du Néocomien (m²/s) ajustée après calage (AESN) Données requises/calage

Modèle Différences finies Eléments finis Application Chap Exploitation en crise réaliste ? Débit actuel m 3. jours -1 (20 million de m 3. an -1 ) Débit de crise = 4. débit actuel Modélisation hydrogéologique (HYDROEXPERT) Réponse : exploitation de crise possible selon les potentialités de l'aquifère (durée de crise de 3 mois à 1 an) Plutôt dans l'Albien que le Néocomien (cf. Transmissivité) Démarche de modélisation

Modèle Différences finies Eléments finis Application Chap Conclusion Choix du modèle : Domaine de définition du modèle Problématique posée Données nécessaires Coût Discrétisation spatiale : Fonction des données Fonction de la méthode numérique retenue (éléments finis) Discrétisation temporelle : Fonction de la méthode numérique (instabilité)