Cosmologie Introduction Les équations de Friedmann Histoire thermique

Slides:



Advertisements
Présentations similaires
Comment est-ce qu’on sait vraiment
Advertisements

Comment est-ce quon sait vraiment ce qui est là? Lespace est une grande place, et essentiellement nous étions jamais plus loin que notre lune. Comment.
Histoire La nucléosynthèse stellaire : Le cycle proton-proton
du Big Bang à la fin des temps
Introduction aux modèles cosmologiques
Astrophysique et Cosmologie avec les Ondes Gravitationnelles
LES FANTÔMES DE LA COSMOLOGIE Júlio C. Fabris Departamento de Física – UFES IAP
15.2 Lorigine des planètes p À lorigine, notre système solaire faisait partie dune nébuleuse qui comprenait surtout de lhydrogène et de lhélium.
Constante cosmologique, énergie du vide ?
Cosmologie relativiste
L’énigme de la matière sombre: la face cachée de l’Univers
Éléments de Biophysique des Radiations Ionisantes
(Institut d’Astrophysique de Paris)
Faculté des arts et des sciences Département de physique Astronomie Extragalactique Cours 11 : Simulations et observations Structure à grande échelle Paramètres.
introduction aux modèles cosmologiques
Physique des particules et cosmologie
Master Classes CP Sandrine SCHLÖGEL (UNamur-UCLouvain)
La cosmologie moderne: Le Big Bang
Chapitre 1.1 Importance du milieu interstellaire
L’Univers.
Cosmologie • Univers fini ou infini ? • Relativité
Cosmologie • Matière sombre • Cosmologie newtonienne
La cosmologie Master Classes CP Sandrine SCHLÖGEL
Université de Genève, 23 octobre 2004 Le grand cercle: des particules au cosmos (et vice versa) G. Veneziano CERN/PH-TH & Collège de France C \l \infty.
Introduction à la Cosmologie
Michael Esfeld Université de Lausanne
DES ONDES GRAVITATIONNELLES
DES ONDES GRAVITATIONNELLES
DES ONDES GRAVITATIONNELLES
ONDES GRAVITATIONNELLES

La notation scientifique
Faculté des arts et des sciences Département de physique Astronomie Extragalactique Cours 5: Paramètres des halos non-lumineux et matière sombre.
Faculté des arts et des sciences Département de physique Astronomie Extragalactique Cours 10 : Matière sombre (dark matter)
De la Cosmogonie à la Cosmologie
1 Séminaire pluridisciplinaire de sciences et technologies GEST – D – 314 Année académique Séances 11 et 12.
la création de l’Univers selon la théorie du «Big Bang»
Cosmologie et SuperNovae
L’univers en expansion
Distances, volumes et âges en cosmologie
1/Rappel formation de l’univers :
ATOME ET SPECTRE ÉLECTROMAGNÉTIQUE
A brief thermal history of the Universe
Chapitre 22: Cadavres stellaires
La cosmodiversité de l’Univers
Séminaire de 3ème année Diane Talon-Esmieu
DANS LA COMMENCEMENT…….. TOUS! L’ÉNERGIE AUGMENTE, DEVIENS COMME UN BOMBE……. COMMENCE DE S’ÉLARGIR…..
Mesure des distances 2 : Astronomie Extragalactique
J. Colas5 décembre 2002 Laboratoire d ’Annecy de Physique des Particules
6 juin 2014 Vincent Poireau, LAPP Annecy 1 RESULTATS DE L’EXPERIENCE AMS-02.
1 L’observation du ciel avec le satellite Planck L’observation du ciel avec le satellite Planck François Couchot - LAL Orsay - CNRS 22 novembre 2009 fête.
Cosmologie & Big Bang Comprendre le principe cosmologique
La mécanique de Newton et l’atome
La théorie de l’inflation
Évolution des lois d’échelle dans les amas de galaxies à partir d’observations du satellite XMM : physique de la formation des grandes structures. Sergey.
Neutrinos et Perturbations Cosmologiques
Dynamique intégrale non-linéaire Statistique intégrale non-linéaire
Calorimètres électromagnétiques et hadroniques
= ~300 kpc.
Détecter Quoi ? Pourquoi ? Ecole de Cargèse Mars 2005.
La fusion nucléaire Par Olivier Lauzon.
Les planètes du système solaire sont:
Astrophysique des sources de haute énergie des photons aux particules
La quête de l’antimatière
La grande saga de l’Univers
La formation de l’Univers PowerPoint 10.2b
Formation d’étoiles: temps caractéristiques et autorégulation
Courbure de l’espace-temps densité d’énergie de la matière Relativité Générale: le champ gravitationnel coïncide avec la courbure de l’espace-temps, et.
Petite visite guidée de l’infiniment petit et de l’infiniment grand Guy Wormser Laboratoire de l’Accélérateur Linéaire d’ Orsay IN2P3/CNRS et Université.
Modélisation des amas de galaxies Optique/IR en relation X/SZ Sébastien Fromenteau APC - Université Paris Diderot Journées Jeunes Chercheurs 2008 Saint-Flour.
Transcription de la présentation:

Cosmologie Introduction Les équations de Friedmann Histoire thermique paramètres cosmologiques la singularité Histoire thermique recombinaison nucleosynthèse découplage des neutrinos Inflation

Introduction Depuis les débuts l’humanité a tentée de décrire ou comprendre l’univers. Dans ce sens, la cosmologie est un des des sciences les plus anciennes. Mais, pour longtemps elle appartenait à la religion ou philosophie et seulement récemment elle est devenue une science naturelle dans le sens moderne du terme. Le premier qui s’en est soucié est Newton qui a considéré une distribution homogène d’étoiles et qui a dit que la moindre sur-densité engendrera un effondrement du système. Mais la situation est en effet encore plus difficile. Les équations de Newton n’admettent strictement pas de solution régulière pour une densité de masse constante. Pour étudier des petites fluctuations il faut d’abord soustraire la densité moyenne, le dit ‘Jeans Swindle’.

Après la découverte de ses équations de la gravitation (relativité générale), Einstein a toute suite réalisée qu’il doit être possible d’en trouver des solution cosmologiques. Mais, en accord avec les connaissances astronomiques de l’époche (1916), il cherchait une solution statique. Il la trouvait, mais seulement en ajoutant un constante (la constante cosmologique, ) aux éqs. Il n’a pas remarqué, que sa solution est instable. Vers la fin des années 20, l’astronome américain Edwin Hubble, a découvert que les galaxies s’éloignent l’une de l’autre avec une vitesse qui est proportionnelle à la distance. La loi de Hubble (H0 = constante de Hubble): v = H0r Le physicien (et abbé) belge, Lemaître, et encore avant lui, le mathématicien russe Alexandre Friedmann, avaient trouvé des solutions des équations d’Einstein avec expansion, qui reproduisent la loi de Hubble.

Les équations de Friedmann-Lemaître Nous supposons que à grande échelle l’espace est homogène et isotrope. Il n’y a pas de position ni de direction préférée => principe cosmologique. Un espace homogène et isotrope est un espace à courbure, K, constante. Sa métrique est alors donne par un facteur d’échelle a(t). La métrique de l’espace- temps est de la forme ds2 = -dt2 + a2(t)[dr2/(1-Kr2/4) +r2(d2+sin2 d2)] Les éqs. d’Einstein se réduisent à Ici  est la densité d’énergie et P la pression dans l’univers.  est la constante cosmologique. Une distance physique dans un tel univers est donnée par L = a(t)Rc et alors deux objets à distance L s’éloignent avec la vitesse La loi de Hubble H0 = h100km/sec/Mpc, h = 0.7§ 0.1, 1Mpc ' 3.1£ 106 années lumière

Un photon émit au temps t avec longueur d’onde , est absorbé au temps t0 (aujourd’hui) avec longueur d’onde 0 = a0/a(t) = (1+z). Pour z ¿ 1 nous avons. Nous introduisons encore la densité critique c = 3H02/(8G) et les paramètres de densité m = m(t0)/c ' 0.3 (matière) r = r(t0)/c ' 3£ 10-5/h2 (radiation,  et ’s) K = -K/a2(t0)c ' 0 ( courbure) m = /(3H02) ' 0.7 ( constante cosmologique) h ' 0.7, t0 ' 1.3£ 1010 années (age de l’univers) La distance d’un photon émis au temps t est (nous normalisons le facteur d’échelle à a(t0) =1 )

chandelles standardes (modifiées) Le flux reçu d’une source à redshift z de luminosité intrinsèque L est F = L/(4 D(z)2) Alors, pour une source dont nous connaissons la luminosité nous pouvons mesurer le flux et le redshift et nous obtenons alors D(z). Si nous connaissons toute une classe de sources avec la même luminosité L, des chandelles standardes, et à des différents redshifts z, nous pouvons trouver la fonction D(z) Exemples: les céphéides (étoiles variables) les SNIa (naines blanches qui dépassent la limite de Chandrasekhar)

Pour  négligeable, dans un univers à contenu matériel ‘normal’, tel que +3P>0 l’expansion est décélérée. Dans un passé fini, on a a=0 (le big bang). Pour K>0 on trouve a² = 0 dans un future fini et a² < 0 après. Pour K· 0, a² reste positive et approche |K|½ . Big bang (singularité dans l’espace temps) Big crunch

histoire thermique de l’univers La température actuel du rayonnement cosmique est T0 = (2.7372§ 0.001)K, T(z) = T0(1+z) Le spectre est le meilleur spectre thermique jamais mesuré. Dans le passé, l’univers n’était pas seulement beaucoup plus dense, mais aussi plus chaud que aujourd’hui. A z > zR ' 1300, TR ' 3500 ' 0.3eV, il y avait assez de photon avec une énergie au dessus du seuil de réionisation de l’hydrogène (13.7eV) pour garder l’univers ionisé (tR » 105 années). En régressant vers le passé, da densité de radiation croit comme (1+z)4 tandis que celle de la matière ne croit que comme (1+z)3. A z > zeq ' 104, l’univers est dominé par la radiation. A Tnuc ' 0.8MeV ' 109 K les éléments légers se forment à partir de protons et neutrons. A Tdec ' 1.4MeV les neutrinos découplent. A Tconf ' 200MeV le plasma de quarks et gluons est confiné en protons et neutrons. A Tew ' 200GeV la transition électrofaible a lieu… ? inflation? ew transition confinement nucléosynthèse recombinaison

nucléosynthèse Même si l’énergie de liaison du deutérium est de 2.2MeV, seule à T ' 0.08MeV (t ' 200 sec), le deutérium devient stable et la nucléosynthèse a lieu. La plus part des neutrons est brûlée en hélium-4, une petite trace en hélium-3 et il reste un peu de deutérium. Aussi une trace de lithium-7 se forme, mais pas d’éléments plus lourds. Ceux-ci (jusqu’au fer) se forment dans des étoiles. Les éléments plus lourds que le fer ne se forment que lors des explosions des supernovae. L’abondance d’hélium-4 est sensitive à la vitesse d’expansion => nombre de degrés de liberté relativistes à abondance thermique à T=0.08MeV => nombre de familles de neutrinos légers. L’abondance de deutérium et de hélium-3 est très sensitive à la densité baryonique.

asymétrie baryonique Dans notre galaxie toutes les étoiles consistent de matière et non de anti-matière. Ceci est aussi vrai pour toutes les galaxies jusqu’au cluster de Virgo et, fort probablement, pour tout l’univers observable. Comme le nombre de baryons est (presque) conservé dans le modèle standard de la physique des particules, cet excès de baryon versus les anti-baryon de environs 1 sur 1010 doit être présent dans l’univers depuis T ' 200 GeV ( t ' 10-10sec). Beaucoup de mécanismes ont été proposés pour générer cette asymétrie... modifications du secteur de Higgs du modèle standard violations du nombre leptonique GUT Ils vont tous au delà du modèle standard de la physique des particules

inflation Problèmes de la cosmologie standard: le problème de l’horizon, la distance qu’on photon peut traversé à partir du big bang jusqu’au moment t. LH(t) = a(t)s0t dt/a(t) < 1 pour des modèles cosmologiques avec +3P>0. Par exemple, la distance LH(trec) est vue sous un angle d’environ 1° dans le ciel. Pourquoi, des différentes régions séparées de plus de 1° ont-ils la même température? le problème de platitude. Pour un univers avec +3P>0, la valeur =1 est un point fixe instable de l’évolution. Pourquoi, notre univers qui est si ‘vieux’ a-t-il encore  ' 1? A petite échelle, l’univers n’est pas homogène et isotrope. Nous supposons, que de petites fluctuations initiales se sont amplifiées sous l’instabilité gravitationnelle et ont ainsi menées aux grandes structures observées. D’ou viennent ces fluctuations initiales? (Des fluctuations thermiques sont largement trop petites.)

inflation Une période d’expansion avec \rho + 3P <0 est appellée une période inflationniste. Pendant une telle période, l’horizon peut devenir arbitrairement grand et  =1 devient un attracteur de toute evolution. L’inflation est le plus souvent réalisée par un champ scalaire . La densité d’énergie et la pression d’un champ scalaire sont donnés par = ½ 2 + V(), P = ½ 2 - V(), si le potentiel domine on a  + 3 P ' -2V < 0 . Un champ scalaire a des fluctuations quantique qui, après l’inflation sont gelées comme fluctuations classique de la matière à très grande échelle. Via les équations d’Einstein ceci engendre aussi des fluctuations de la métrique, qu’on peut quantifier par un ‘potentiel gravifique’ . On obtient un spectre h||2i k3 = Akn-1 avec n » 1. En plus, un spectre d’ondes gravitationnelles est généré, h|h|2i k3 = BknT avec nT » 0. On trouve aussi la relation B/A = -nT18/25 (nT < 0 et n< 1) pour des modèles simples.