Club d'Astronomie Lycée Saint Exupéry Lyon

Slides:



Advertisements
Présentations similaires
Les spectres de la lumière
Advertisements

Chap. 4 (suite) : Le laser..
La lumière.
LES SPECTRES DE LUMIERE
Maître de conférences section 34
Messages de la lumière 1. Le prisme : un système dispersif
Les ondes.
Température du Soleil.
Sources de lumière colorée
Sources de lumière colorée
16 Apprendre à rédiger Voici l’énoncé d’un exercice et un guide (en orange) ; ce guide vous aide : pour rédiger la solution détaillée ; pour retrouver.
CHM 1978 – Chimie Analytique Automne 2001
Les spectres stellaires
Univers 4 Les spectres lumineux.
Chapitre 3. Les étoiles  .
Les ondes électromagnétiques dans l’habitat
Planck Einstein De Broglie TS – V.3 Dualité onde-particule
ECHANGES D’ENERGIE Caractéristiques du rayonnement Bilan radiatif
Le rayonnement des corps noirs et La spectroscopie
Loi de rayonnement.
Astrophysique et astrochimie
INTRODUCTION A LA SPECTROSCOPIE
Lumières d’étoiles • Le spectre électromagnétique
Phm - Observatoire de Lyon – janvier 2014
Rayonnement du corps noir
Spectre d'émission et d'absorption: les messages de la lumière.
Physique quantique.
Les débuts de la théorie quantique
Premier principe de la thermodynamique
Module 2C Les images thermiques.
Introduction au Projet 1 Eclairage extérieur Mélik Khiari
Messages de la lumière 1. Le prisme : un système dispersif
Chapitre 9: Les débuts de la théorie quantique
Couleurs et images.
Ch 3 source de lumières colorées
Rayonnement du corps noir
La radiation dans l’atmosphère
Lumière des étoiles PHOTOMÉTRIE 2 techniques d’analyse SPECTROSCOPIE.
LES SPECTRES LUMINEUX I. Les spectres d ’émission
Spectres lumineux I. Les spectres d'émission 1. Définition
Lumière d’étoiles Chapitre P12 (livre p257) I- Les spectres :
SOURCES DE LUMIERE COLOREE
Rayonnement et effet de serre
Chapitre 2 : La lumière.
T.P.3 La couleur d’une étoile
MATIÈRE Les images du rayonnement solaire réfléchie (suite et fin)
Chapitre 3 Sources de lumières colorées
1ère S - Observer I.3 : Couleurs et sources de lumière
Couleurs et images.
Spectroscopie : Comment déterminer la constitution chimique d'une étoile ?
LUMIERE ET PHOTOMETRIE
Sources de lumière colorée
Chapitre 9: Les débuts de la théorie quantique
Interaction lumière-matière
Les messages de la lumière
I Les spectres d’émission
La radiation dans l’atmosphère
Chapitre 3 Activités.
Thème : L’Univers Domaine : Les étoiles
Rayonnement du corps noir
Spectromètre UV-Visible
L'observation des étoiles
Le bilan énergétique de la Terre
L‘Effet de serre.
La lumière.
EMSCA3641, Radiation Radiation : solaire. EMSCA3641, Radiation Radiation : terrestre.
UNIVERS – chap 8 REFRACTION DE LA LUMIERE.
LES ECHANGES D’ENERGIE ENTRE LUMIERE ET MATIERE
Transfert de chaleur par rayonnement
Température du Soleil.
Transcription de la présentation:

Club d'Astronomie Lycée Saint Exupéry Lyon Température du Soleil Club d'Astronomie Lycée Saint Exupéry Lyon

Corps solides incandescents La surface émettrice d’un corps solide très chaud peut être comparée à une infinité de petits oscillateurs, sources en vibration donnant chacune une radiation de longueur d’onde l L’ensemble des radiations forme un spectre continu Sources : Initiation à l ’astronomie (Agnès Acker) pages 6 et 7 Méthodes de l ’astrophysique pages 60 à 69 Astronomie Flammarion (Pecker) pages 208 et 209 - 166 et 167 Club d'Astronomie Lycée Saint Exupéry Lyon

Corps solides incandescents La répartition de l’énergie dans ce spectre dépend de la température de la source Généralement, on ne peut lier par des lois simples, les propriétés du rayonnement d’un solide à sa température Les physiciens ont été amené à envisager un corps idéal appelé Sources : Initiation à l ’astronomie (Agnès Acker) pages 6 et 7 Méthodes de l ’astrophysique pages 60 à 69 Astronomie Flammarion (Pecker) pages 208 et 209 - 166 et 167 le corps noir Club d'Astronomie Lycée Saint Exupéry Lyon

Club d'Astronomie Lycée Saint Exupéry Lyon Les mystères du corps noir Club d'Astronomie Lycée Saint Exupéry Lyon

en équilibre thermique Un corps noir est une enceinte fermée contenant des particules et des photons en équilibre thermique Un rayonnement existe en son sein, mais c’est un milieu complètement absorbant Source : ASTONOMIE FLAMMARION (Pecker) - page 208 Les particules sont composées de molécules, d ’atomes, d ’ions, d ’électrons libres…. La « distribution » des particules de diverses espèces, de différents niveau d ’énergie, de diverses énergie est seulement fonction de la valeur de T. L ’énergie du rayonnement résulte des énergies de dissociation des particules. Sources : Méthodes de l ’astrophysique page 9 Des charges électriques en mouvement créent un champ électromagnétique Méthodes de l ’astrophysique page 79 Les interactions entre les atomes ou les ions et les électrons libres rendent possible une suite continue de variation d ’énergie. En effet, un atome est capable d ’absorber n ’importe quel photon d ’énergie supérieur à l ’énergie nécessaire à son ionisation. Dans ce cas, une partie de l ’énergie du photon absorbé permet l ’ionisation de l ’atome ; le complément d ’énergie est transféré à l ’électron libre sous forme d ’énergie cinétique. Inversement, un atome ionisé peut recapter un électron libre. La différence entre l ’énergie du noyau de l ’atome, augmentée de l ’énergie cinétique de l ’électron libre et celle de l ’atome formé, peut être émise sous forme d ’un photon. La longueur d ’onde de la lumière émise ainsi varie de façon continue.  le rayonnement reste à l’intérieur du corps Club d'Astronomie Lycée Saint Exupéry Lyon

En pratique, les lois du rayonnement Mais comment peut-on l’observer ??? En pratique, les lois du rayonnement restent approximativement valables tant que les pertes d’énergie sont négligeables devant l’énergie emmagasinée dans le corps  On fait un tout petit trou dans sa paroi et on regarde à l’intérieur Source : ASTONOMIE FLAMMARION (Pecker) - page 208 Les particules sont composées de molécules, d ’atomes, d ’ions, d ’électrons libres…. La « distribution » des particules de diverses espèces, de différents niveau d ’énergie, de diverses énergie est seulement fonction de la valeur de T. L ’énergie du rayonnement résulte des énergies de dissociation des particules. Sources : Méthodes de l ’astrophysique page 9 Des charges électriques en mouvement créent un champ électromagnétique Méthodes de l ’astrophysique page 79 Les interactions entre les atomes ou les ions et les électrons libres rendent possible une suite continue de variation d ’énergie. En effet, un atome est capable d ’absorber n ’importe quel photon d ’énergie supérieur à l ’énergie nécessaire à son ionisation. Dans ce cas, une partie de l ’énergie du photon absorbé permet l ’ionisation de l ’atome ; le complément d ’énergie est transféré à l ’électron libre sous forme d ’énergie cinétique. Inversement, un atome ionisé peut recapter un électron libre. La différence entre l ’énergie du noyau de l ’atome, augmentée de l ’énergie cinétique de l ’électron libre et celle de l ’atome formé, peut être émise sous forme d ’un photon. La longueur d ’onde de la lumière émise ainsi varie de façon continue. Club d'Astronomie Lycée Saint Exupéry Lyon

Les trois lois du rayonnement Club d'Astronomie Lycée Saint Exupéry Lyon

Loi de Stefan (1879) La puissance totale P rayonnée par un corps noir de surface S, est proportionnelle à la quatrième puissance de sa température absolue T P = S . . T4 avec  = 5,669 . 10-8 W . m-2 . K-4 Club d'Astronomie Lycée Saint Exupéry Lyon

Loi de Wien (1893) max.. T = 2,888 . 10-3 m.K-1 La longueur d’onde max qui correspond au maximum de rayonnement émis par un corps noir, est inversement proportionnelle à sa température absolue T max.. T = 2,888 . 10-3 m.K-1 Ce maximum d’intensité pour une longueur d’onde donnée confère au corps sa couleur dominante Club d'Astronomie Lycée Saint Exupéry Lyon

Loi de Planck (1900) ou loi du « corps noir » Intensité lumineuse Longueur d’onde La distribution spectrale de la lumière émise par un corps noir ne dépend que de sa température. Source : Méthodes de l ’astrophysique page 61 I(l) = luminance spectrale Source: Initiation à l ’astronomie (Agnès Acker) page 7 Quand la température croît : - l ’énergie totale rayonnée, représentée par l ’aire sous la courbe, croît (loi de Stéfan) - le sommet de la courbe est déplacé vers les petites longueurs d ’onde (loi de Wien) - la forme de la courbe est calculée par la formule de Plank. Source : ASTRONOMIE FLAMMARION (Pecker) - page 208 Les lois du corps noir ont été empiriquement soupçonnées dès de milieu du XIXème siècle, mais Planck démontra la formule lorsqu’il comprit que les échanges d ’énergie devaient correspondre à des transitions discrètes Club d'Astronomie Lycée Saint Exupéry Lyon

Pour chaque longueur d ’onde l un corps noir de température T donne un rayonnement d ’intensité Il h : constante de Plank = 6,626 . 10-34 J . s Source : Méthodes de l ’astrophysique page 61 I(l) = luminance spectrale Source: Initiation à l ’astronomie (Agnès Acker) page 7 Quand la température croît : - l ’énergie totale rayonnée, représentée par l ’aire sous la courbe, croît (loi de Stéfan) - le sommet de la courbe est déplacé vers les petites longueurs d ’onde (loi de Wien) - la forme de la courbe est calculée par la formule de Plank. Source : ASTRONOMIE FLAMMARION (Pecker) - page 208 Les lois du corps noir ont été empiriquement soupçonnées dès de milieu du XIXème siècle, mais Planck démontra la formule lorsqu’il comprit que les échanges d ’énergie devaient correspondre à des transitions discrètes k : constante de Boltzmann = 1,380 . 10-23 J . K-1 c : vitesse de la lumière dans le vide = 2,998 . 108 m . s-1 Club d'Astronomie Lycée Saint Exupéry Lyon

Cas des étoiles Un photon émis au centre de l ’étoile a beaucoup de mal à en sortir : il est absorbé, réémis, réabsorbé, réémis…..des milliards de fois avant de sortir Le milieu est si opaque, qu’il se comporte un peu comme une boite fermée Les photons qui s’échappent traversent successivement des milieux de plus en plus froids et la distribution de leurs énergies s’adapte à la température : il y a localement une sorte d ’équilibre Le spectre émis par une étoile « ressemble » au spectre du corps noir dont la température est proche de celles des régions superficielles Source : ASTONOMIE FLAMMARION (Pecker) - pages 209 et 208 La sortie d’un rayonnement issu du centre du Soleil peut durer des millions d ’années. C’est étrange !!! On assimile le rayonnement des étoiles rouges, bleues, ou blanches, au rayonnement du corps noir ! Club d'Astronomie Lycée Saint Exupéry Lyon

Le rayonnement solaire. Soleil lmax du Soleil (sommet de la courbe) correspond à celle d’un corps noir à 6 200 K L ’énergie totale rayonnée (aire sous la courbe) correspond à celle d’un corps noir à 5 800 K Dessin du spectre du Soleil, fichier Couleur dans : C:\club\Spectro-solaire 2001\Cours Club d'Astronomie Lycée Saint Exupéry Lyon

Température superficielle du Soleil Rappel de la Loi de Stefan : Puissance totale P rayonnée par un corps de surface S à la température T P = S . . T4 avec  = 5,669 . 10-8 W . m-2 . K-4 Loi de Stefan appliquée au Soleil : rayon du Soleil : r = 6,960 . 108 m surface du Soleil : S = 4  r2 P Soleil = 4  r2 .  . T4 Club d'Astronomie Lycée Saint Exupéry Lyon

Club d'Astronomie Lycée Saint Exupéry Lyon Température de la surface du Soleil Club d'Astronomie Lycée Saint Exupéry Lyon