Chapitre II RESEAUX LOCAUX Ethernet

Slides:



Advertisements
Présentations similaires
Semaine 5 Couche Liaison de données Cours préparé par Marc Aubé
Advertisements

Séance 3 RESEAUX LOCAUX Token Ring
RSX101 Réseaux et Télécommunications
Couche liaison de données
Chapitre VIII RESEAUX LOCAUX Ethernet
Gigabit et 10 Gigabit Ethernet
Chapitre 5 : Le Modèle OSI La Couche Liaison De Données
Architecture de réseaux
Authentification contre Masquarade
1 cours réseaux chapitre 3 la couche liaison. 2 La couche liaison Objectifs, la détection et la correction d'erreurs, le contrôle de flux, les protocoles.
Cours Présenté par …………..
Le Bus CAN CAN est un véritable réseau qui respecte le modèle OSI
UDP – User Datagram Protocol
Exercice Trame Ethernet
Open System Interconnection
Liaison de Données M1/M2 ISV M2 IPS 2006/ Neilze Dorta
Le réseau Ethernet Présentation Patrick MONASSIER
LA TRANSMISSION DE DONNEES
Réseaux locaux : techniques d'accès M1/M2 ISV M2 IPS 2006/2007 Neilze Dorta UFR Mathématiques et Informatiques - Crip5 1.
Prof : M.Trannoy - Professeur d'électrotechnique.
SOPRA. / IUT GTR Éric Aimée
Le modèle O.S.I..
Les medias.
Architecture Réseau Modèle OSI et TCP.
JST 2008 Michel Boisgontier CETMEF/DSANM/GRB Ministère de l'Écologie, de l'Énergie, du Développement durable et de l'Aménagement.
NOTE : Pour faire évoluer le diaporama, si le clic de souris ne fait rien utilisez les touches du clavier : Pg up Pg down.
TRANSMISSION DES DONNEES.
Projet d’électronique numérique
TRANSMISSION SÉRIE ASYNCHRONE Février 2008 JF VIENNE.
Transmission Séries des Données
Fonction COMMUNIQUER les liaisons série
Distributed Queue Dual Bus
Chapitre 4.
NOTE : Pour faire évoluer le diaporama, si le clic de souris ne fait rien utilisez les touches du clavier : Pg up Pg down.
Le Modele OSI.
Cours n° 3 Réseaux locaux et technique d’accès
© Sopra, 1999 / Date / Nom doc / p1 Réseaux Locaux SOPRA. / IUT GTR Éric Aimée.
Cours de Réseaux Informatiques
Cours 5 Le modèle de référence.
Sommaire Dans ce chapitre, nous aborderons :
ARP Le protocole ARP.
JM Pottier (France Telecom) 15/10/2007
Les réseaux locaux virtuels : VLAN
Cours n° 2 Liaison de données et trames
ARP Le protocole ARP Pour qui utilise-t-on le protocole ARP ? ou
Technologies Ethernet
Les RESEAUX.
Le partage de la ligne.
Intervention sur un système technique
1. Introduction Le traitement informatisé de données requiert un dialogue, une communication entre l’homme et la machine, et parfois, entre plusieurs.
Norme & Ethernet Création : Modifications :
Les Réseaux Informatiques
Les Réseaux Informatiques
Les Réseaux Informatiques
Architecture Ethernet [© MRIM.tv.2003
Réseaux Informatiques
Architecture ISEP 2007– A3 Partie 2.
Réseaux Informatiques
Vlan Trunking Protocol
Les RESEAUX.
UE3-1 RESEAU Introduction
Les bases du protocole Modbus
Architecture Client/Serveur
Les architectures logiques
Description d’une liaison série
Les réseaux locaux (Ethernet)
Réseaux industriels & bus de terrain
Département Informatique Les Réseaux Informatiques Couche Liaison Protocole Ethernet Laurent JEANPIERRE.
Département Informatique Les Réseaux Informatiques Couche Transport Protocoles UDP & TCP Laurent JEANPIERRE.
Département Informatique Les Réseaux Informatiques Ethernet, FastEthernet, Gigabit Ethernet : L’évolution Laurent JEANPIERRE.
Transcription de la présentation:

Chapitre II RESEAUX LOCAUX Ethernet Les Réseaux Informatiques Chapitre II RESEAUX LOCAUX Ethernet

4 RÈGLES ET LOIS POUR LE RÉSEAU ETHERNET Sommaire Les Réseaux Informatiques ETHERNET 1 ADRESSAGE 2 TRAME ETHERNET 3 MÉTHODE D’ACCÈS 4 RÈGLES ET LOIS POUR LE RÉSEAU ETHERNET

Les Réseaux Informatiques ETHERNET

• PRINCIPE DE FONCTIONNEMENT : ETHERNET Les Réseaux Informatiques • XEROX PARC (Palo Alto Research Center) Conception originale de B. Metcalfe (1976) • PRINCIPE DE FONCTIONNEMENT : l N stations sur le même support l une station écoute avant d’émettre l si deux stations émettent simultanément, il y a collision l une seule trame à un instant donné l toutes les stations reçoivent la trame émise

Rôle de la couche physique Elle assure 2 fonctions : Une fonction de connexion décrite par le MAU (Medium Acces Unit) et réalisée par une prise qui dépend essentiellement du support, et du connecteur de la carte interface. une fonction d'adaptation décrite par le niveau de signalisation physique (Physical Signalling Layer), et réalisée par une interface NIC (Network Interface Controler) qui transforme les signaux logiques binaires, en signaux électriques, optiques … afin de les rendre transportables par le support. Naturellement, cette adaptation est assurée aussi dans l'autre sens. Suivant la méthode d'accès, elle peut aussi réaliser d'autres fonctions telles que: détecter l'émission d'une autre station sur le médium (Carrier Sense:détection de la porteuse), alors que la station est en écoute détecter l'émission d'une autre station pendant que la station émet (Collision Detect)

Rôle de la couche liaisonTrame Elle assure aussi 2 fonctions décrites par les 2 sous-couches de l'architecture IEEE : Une fonction de contrôle d'accès au support décrite dans la sous-couche MAC ( Medium Access Control) et réalisée par un coupleur, qui contrôle les transmissions sur le support, et qui gère la procédure d'accès au support, le formatage des trames, et la détection des erreurs. Une fonction de contrôle logique, décrite dans la sous-couche LLC (Logic Link Control layer) qui met en oeuvre la procédure d'échange de trames (configuration de la liaison, reprises sur erreurs, contrôle de flux …).

Format des adresses MAC ou adresse physique. ETHERNET Les Réseaux Informatiques Format des adresses MAC ou adresse physique. • Le constructeur reçoit une adresse dont : - les trois premiers octets sont fixés, code fabricant (Vendor Code) ou OUI (Organizationa Unique Identifier) - les trois suivants étant laissés à sa libre utilisation (numéro du coupleur chez ce constructeur) • Ces adresses Ethernet sont alors unique dans le monde. - Les adresses étaient attribuées par le consortium (DEC, INTEL, XEROX) - C'est maintenant l'IEEE qui distribue ces adresses (1000 $ pour 224 adresses) l 00:00:0C:XX:XX:XX Cisco l 08:00:20:XX:XX:XX Sun l 08:00:09:XX:XX:XX HP

• 224 adresses (16 777 216) par fabricant (750 fabricants en 1997) Les adresses IEEE 802.3 ou Ethernet sont codées sur 48 bits (6 octets). l Syntaxe : • 08:00:20:09:E3:D8 ou 8:0:20:9:E3:D8 l Adresse Broadcast(diffusion générale: émettre vers tout le monde): FF:FF:FF:FF:FF:FF l Adresse Multicast: le premier bit d'adresse transmis est égal à 1 (le premier octet de l'adresse est impair) : • 09:00:2B:00:00:0F, 09:00:2B:01:00:00 l Adresse individuelle : comprend le premier bit transmis à 0 (premier octet d'adresse pair) : • 08:00:20:09:E3:D8 ou 00:01:23:09:E3:D5 Une adresse de station individuelle est administrée soit localement soit globalement (U/L:Universally/Localy): l localement : adresse significative que pour le réseau sur lequel elle est connectée; le second bit d'adresse transmis est égal à 1; les 46bits qui suivent sont choisis par l’utilisateur, et ne sont pas nécessairement les numéros du constructeur et du coupleur l globalement : cette adresse est dite universelle et est attribuée par l'organisme IEEE; le second bit d'adresse transmis est égal à 0.

Les Réseaux Informatiques (Parenthèse)MODES DE COMMUNICATION Les Réseaux Informatiques Adresse correspondant à un unique destinataire (unicasting) : bit I/G(Individual/Group) à 0 Adresse pour la diffusion générale (broadcasting) : tous les bits à 1 Adresse pour la diffusion restreinte (multicasting:adresse de groupe) : bit I/G à 1

Les Réseaux Informatiques INTRODUCTION

Destinataire d’une trame ? ETHERNET Les Réseaux Informatiques Notion de trame Chaque station reçoit toutes les données: Le champ de donnée contient le paquet de niveau LLC. Le champ est vu comme une suite de 46 à 1500 octets. Si moins de 46 octets sont fournis par la couche supérieure, le champ de donnée est complété par le PAD (séquence de bourrage) Emetteur d’une trame ? Destinataire d’une trame ? Ajout d’un bordereau d’envoi Entête de trame Adresse destination (6 octets) Adresse source (6 octets) Notion de trame structurée @ Destination @ Source Données Adresses MAC

Reconnaissance des trames ETHERNET Les Réseaux Informatiques Reconnaissance des trames Reconnaître le début de trame? Synchronisation récepteur/émetteur Nécessité d’un préambule (de niveau physique) Ensemble d’octets connus (dénué de toute information spécifique) Permet de synchroniser les horloges Préambule @ Destination @ Source Données 7 octets

Les Réseaux Informatiques ETHERNET Les Réseaux Informatiques Le préambule Réception du préambule en cours de route Déjà commencé (transitoires) Depuis quand ? Nécessité de marquer la fin du préambule Insertion d’un « Start Frame Delimitor » Caractère spécial Suit le préambule Précède les données (permet au récepteur de savoir le début de la trame (le champs significatif)) Préambule SFD @ Destination @ Source Données 1 octets

Reconnaissance des trames ETHERNET Les Réseaux Informatiques Reconnaissance des trames Comment reconnaître la fin de trame ? Solutions Longueur de trame: indique aussi si le champ de données contient un PAD, et quelle est la longueur de celui-ci (obtenue par soustraction) Norme 802.3 Dans le standard ethernet pour indiquer le type de protocole de niveau 3 employé pour transporter le message 2 octets Préambule SFD @ Destination @ Source Données Long/ Type

Le problème des erreurs ETHERNET Les Réseaux Informatiques Le problème des erreurs Ajout de bruit au signal Modifie les données Réductible, mais inévitable  Ajout de redondance avant émission Code détecteur d’erreur (CRC) (4 octets) Recalcul à la réception Différence  modification données  destruction de la trame endommagée  Silence inter – trames de 9,6μs: le temps laissé entre une chute du signal occupant le média et le début de la trame émise (ce délai correspondrait au temps d’émission de 12 octets ) Impossible de mélanger deux trames Norme Ethernet Préambule SFD @ Destination @ Source Type /long Données CRC

Transmission d'une trame : La sous-couche MAC elle met en oeuvre le protocole CSMA/CD : elle est chargée de mettre en forme les trames de données avec détection des erreurs de transmission et de gérer la liaison canal en écoutant les signaux "Carrier Sense" et "Collision Detection" émis par la couche physique. Transmission d'une trame : La couche MAC reçoit de la couche LLC des données à émettre; son rôle consiste à: ajouter préambule et SFD aux données de la couche LLC, ajouter le padding si nécessaire, ajouter les champs adresse source, adresse destinataire, longueur des données, calculer le CRC et l'ajouter à la trame, si le signal "Carrier Sense" est faux depuis au moins 9.6μs (ce silence permet de récupérer l’état de repos du média, et permet aux autres station de prendre la main), transmettre la trame bit à bit à la couche physique, sinon attendre que le signal "Carrier Sense" soit faux, attendre 9.6 μs et transmettre bit à bit à la couche physique.

Réception d'une trame : La couche MAC reçoit de la couche LLC une requête de réception de données: écoute du signal "Carrier Sense", réception des bits depuis la couche physique, élimine le préambule, le délimiteur de début de trame (SFD), élimine éventuellement le padding, examine l'adresse destination dans la trame et si celle-ci inclut la station : reconstruit les champs de la trame adresses source et destination, longueur des données et données, transmet les champs reconstruits à la couche LLC, calcule la séquence de contrôle et indique une erreur : si la séquence est erronée, si la trame n'est pas un nombre entier d'octet (misaligned), si la trame > 1518 octets: Le Jabber si la trame < 64 octets: Le Runt (trame victime de collision).

La sous couche LLC (Logic Link Control) Fonctions de contrôle Les protocoles ressemblent au protocole de liaison HDLC, avec plusieurs versions suivant les services attendus (mode non connecté, ou connecté, avec établissement et rupture de connexion, contrôle d'erreurs de transmission ou non … ).

Méthode d’accès: CSMA/CD Les Réseaux Informatiques