Faculté des arts et des sciences Département de physique Astronomie Extragalactique Cours 10: Amas de galaxies.

Slides:



Advertisements
Présentations similaires
UE Sciences de l’Univers : ASTRONOMIE
Advertisements

Détermination de la matière noire dans la Galaxie:
Les unités de mesure en astronomie d’observation
Observatoire de la Côte d’azur
L ’ACCRETION DANS LES AGN ET LES QUASARS
Observations des sources X faibles des amas globulaires avec lobservatoire XMM-Newton Natalie Webb, Toulouse Mathieu Servillat, Didier Barret, CESR, Toulouse.
Faculté des arts et des sciences Département de physique Astronomie Extragalactique Cours 1: Introduction.
(Institut d’Astrophysique de Paris)
Faculté des arts et des sciences Département de physique Astronomie Extragalactique Cours 11 : Simulations et observations Structure à grande échelle Paramètres.
Faculté des arts et des sciences Département de physique Astronomie Extragalactique Cours 3: Cinématique, dynamique et distribution de masse des galaxies.
Perturbations tropicales
Distances, dimensions, masses & temps
MICROSCOPE A EFFET TUNNEL
Distribution des galaxies
Effets denvironnement sur la formation stellaire à léchelle des galaxies Marie Martig sous la direction de Frédéric Bournaud CEA-Saclay/SAp Semaine de.
L’UNIVERS.
Notre galaxie.
Amas et groupes de galaxies
L’Univers extragalactique
Faculté des arts et des sciences Département de physique Astronomie Extragalactique Cours 2: Classification des galaxies.
Faculté des arts et des sciences Département de physique PHY 6790: Astronomie galactique Cours 8:Satellites de la Galaxie LMC & SMC Naines sphéroïdales.
Chiffres de Base pour les amas : Masse Totale : M sun Rayon Viriel:R 200 ~ Mpc Luminosité (Bol.): erg/s Température (Gaz):
Les Collisions de Galaxies
Chapitre 2 Les ondes mécaniques
DES ONDES GRAVITATIONNELLES
DES ONDES GRAVITATIONNELLES
DES ONDES GRAVITATIONNELLES
Andrea Cattaneo Astrophysikalisches Institut Potsdam
La fonction inversement proportionnelle
Faculté des arts et des sciences Département de physique Astronomie Extragalactique Cours 5: Paramètres des halos non-lumineux et matière sombre.
Faculté des arts et des sciences Département de physique Astronomie Extragalactique Cours 7: Formation et Évolution des galaxies: mécanismes environnementaux.
Faculté des arts et des sciences Département de physique Astronomie Extragalactique Cours 10 : Matière sombre (dark matter)
Faculté des arts et des sciences Département de physique Astronomie Extragalactique Cours 2: Profils de luminosité des galaxies.
Astronomie Extragalactique
Faculté des arts et des sciences Département de physique Astronomie Extragalactique Cours 5: Formation et Évolution des galaxies: mécanismes environnementaux.
Astronomie Extragalactique
Faculté des arts et des sciences Département de physique Astronomie Extragalactique Cours 1: Introduction.
Faculté des arts et des sciences Département de physique Astronomie Extragalactique Cours 3: Cinématique et dynamique des galaxies elliptiques.
Faculté des arts et des sciences Département de physique PHY 6790: Astronomie galactique Cours 6: Halo: Amas globulaires Étoiles du halo Formation du halo.
Faculté des arts et des sciences Département de physique PHY 6790: Astronomie galactique Cours 4: Disque (un peu de théorie Binney & Tremaine – Galactic.
Faculté des arts et des sciences Département de physique PHY 6790: Astronomie galactique Cours 10: Modèles de la Galaxie.
Faculté des arts et des sciences Département de physique PHY 6790 Astronomie galactique Cours 1: Introduction Propriétés de base de la Galaxie Formation.
Astronomie Extragalactique
Faculté des arts et des sciences Département de physique Astronomie Extragalactique Cours 1: Classification, propriétés globales des galaxies & fonctions.
Faculté des arts et des sciences Département de physique Astronomie Extragalactique Cours 6: Galaxies à grands z Formation de spirales et delliptiques.
Faculté des arts et des sciences Département de physique Astronomie Extragalactique Cours 8: Amas de galaxies.
Great attractor et Shapley concentration
LA DIFFÉRENCE ENTRAÎNEUR OU RECRUTEUR CE QUON RECHERCHE? TALENT VITESSE SOLIDITÉ ATTITUDE BONNE CONDITION PHYSIQUE.
Astronomie Extragalactique
Faculté des arts et des sciences Département de physique Astronomie Extragalactique Cours 8: Galaxies à grands z Formation de spirales et d’elliptiques.
La voie lactée et les autres galaxies
Les trou noir,comètes et astéroides
Distances, volumes et âges en cosmologie
Découverte de la vraie nature de la
Electrostatique- Chap.2 CHAPITRE 2 CHAMP ELECTROSTATIQUE Objectif :
Les Galaxies Connaître le système de classification
Sémiologie Radiographique Osseuse
Tout savoir sur l’espace
« Les galaxies dans leur contexte cosmologique »
Mesure des distances 2 : Astronomie Extragalactique
Au-delà du Système solaire
Cosmologie & Big Bang Comprendre le principe cosmologique
Chapitre 21: Étoiles variables
Évolution des lois d’échelle dans les amas de galaxies à partir d’observations du satellite XMM : physique de la formation des grandes structures. Sergey.
Dynamique intégrale non-linéaire Statistique intégrale non-linéaire
Faculté des arts et des sciences Département de physique Astronomie Extragalactique Cours 2: ISM (HI, H , H 2 )
Faculté des arts et des sciences Département de physique Astronomie Extragalactique Cours 2: Fonction de luminosité (de masse)
Distances La plus part des caractéristiques des objets célestes passe par la connaissance des leur distance. La mesure de la distance est FONDAMENTALE.
Formation d’étoiles: temps caractéristiques et autorégulation
David Elbaz – ET12 master M Formation d’étoiles: effets d'environnement et lois d’échelle « Propriétés et évolution des galaxies » David Elbaz.
Transcription de la présentation:

Faculté des arts et des sciences Département de physique Astronomie Extragalactique Cours 10: Amas de galaxies

Faculté des arts et des sciences Département de physique Amas de galaxies Pourquoi est-ce important détudier les amas de galaxies ? 1.Formation des galaxies: quest-ce qui sest formé dabord, les galaxies ou les amas (top-down ou bottom-up) – Hierarchical clustering: bottom-up 2.Morphologie des galaxies (Dressler 1980) 3.Évolution des galaxies: difficile à voir pour les galaxies individuelles – plus facile propriétés des amas vs z (e.g. Butcher-Oemler)

Faculté des arts et des sciences Département de physique Amas de galaxies Définition: augmentation du nombre de densité de surface de galaxies par rapport au nombre de densité du background > N À déterminer

Faculté des arts et des sciences Département de physique Amas de galaxies Définition de Abell (1958) 1.N > 50 m 3 < m < m N > 50 - contenus dans un cercle de rayon = 1.7/z arcmin ~ 1.5 h Mpc autour du centre < z < 0.20 h 100 = H 0 /100 ~ 6000 km/s ~ km/s

Faculté des arts et des sciences Département de physique Amas de galaxies Classification de Abell (1965) 1.Amas réguliers: Condensés Symétrie sphérique N ~ 10 2 – 10 3 M E & S0 Peu de S 2.Amas irréguliers: les autres

Faculté des arts et des sciences Département de physique Amas de galaxies Amas réguliers oConcentration centrale oStructure sphérique bien définie oDimension ~ 1-10 Mpc oAmas de Coma Amas irréguliers oCentre mal définie oDimension ~ 1-10 Mpc oAmas de la Vierge

Faculté des arts et des sciences Département de physique Amas de galaxies Classification de Zwicky (1961) / BG > 2 2.N > 50 m 1 < m < m Pas de limite sur z

Faculté des arts et des sciences Département de physique Amas de galaxies Classification de Zwicky 1.Compact: 1 condensation centrale de galaxies brillantes N > 10 en contact (apparent) Symétrie sphérique 2.Medium-compact: 1 condensation centrale de galaxies brillantes – pas de contact (apparent) Plusieurs condensations 3.Open: Pas de condensation / BG ~ 5 Effet de sélection

Faculté des arts et des sciences Département de physique Amas de galaxies Système de Bautz-Morgan (1970): système basé sur la façon dont un amas est dominé par sa galaxie la plus brillante (cD) Type Description Amas dominé par une seule galaxie cD (au centre) Galaxies les plus brillantes de lamas intermédiaires entre cD et elliptiques géantes normales (Coma) Amas sans galaxie dominante (Virgo)

Faculté des arts et des sciences Département de physique Amas de galaxies Principaux problèmes avec B-M: A.Le système B-M est très vulnérable à la contamination des galaxies du champ (galaxie brillante du champ III I) B.Le système B-M est affecté par la distance. K- dimming masque lenveloppe dune cD elliptique normale C.Si 2 ou plusieurs galaxies dominent pas de place dans la classification

Faculté des arts et des sciences Département de physique Amas de galaxies Système de Oemler: système basé sur la proportion des différents types morphologiques: Amas cD: Dominé par des galaxies super-géantes au centre Pas de spirale au centre Plus grande proportion delliptiques Dense, sphérique, concentré Rapport E:S0:S ~ 3:4:2

Faculté des arts et des sciences Département de physique Amas de galaxies Système de Oemler (suite): 2.Spiral-rich: Composition semblable au champ (field) Densité faible, irrégulière, pas concentré Pas de ségrégation (masse ou type) Rapport E:S0:S ~ 1:2:3 3.Spiral-poor: Intermédiaire Composition dominée par S0 Ségrégation (masse & type) Rapport E:S0:S ~ 1:2:1

Faculté des arts et des sciences Département de physique Galaxies du champ Dressler 50 % S + Irr 35 % S0 15 % E M < 16.5 (non complet) Sandage & Tammann 80 % S + Irr 10 % S0 10 % E M < 13 (complet – Shapley-Ames) Biais de Malmquist

Faculté des arts et des sciences Département de physique Temps & grandeurs caractéristiques Crossing time Two-body relaxation time Temps de collision Masse caractéristique Densité caractéristique M/L caractéristique

Faculté des arts et des sciences Département de physique Crossing time T cr = temps requis pour une galaxie voyageant dans un amas à une vitesse v traverse le rayon R T cr = R/v ~ 6 x 10 8 ans x [(R/Mpc)/ v r /10 3 km/s)] V r = vitesse radiale observée Symétrie sphérique v 2 = 3v r 2 R = 10 Mpc T cr = 6 x 10 9 ans < temps de Hubble R > 35Mpc (régions extérieures dun super-amas) T cr > temps de Hubble (pas le temps de passer au centre)

Faculté des arts et des sciences Département de physique Crossing time Système de classification dOemler Amas cD: dense & concentré R T cr E+S0 S Amas spiral-rich: peu dense & peu concentré R T cr E+S0 S Suggère encore une fois limportance des mergers S E + S0

Faculté des arts et des sciences Département de physique Two-body relaxation time T R = temps requis pour que les collisions changent dune façon significative la distribution originale de vitesses T 2B = v 3 /(4 G 2 M g 2 N ln ) T 2B = 2 x ans x (v r /10 3 km/s) 3 (M g /10 12 M S ) 2 (N/10 3 Mpc -3 ) ln Galaxies relaxent rapidement ~ Mg, N, 1/v r, Nb de densitéParamètre dimpact (halo?)

Faculté des arts et des sciences Département de physique Two-body relaxation time Régions centrales damas riches (N ~ 3 x 10 3 gal. Mpc -3 ) T 2B ~ 10 9 ans two-body relaxation important pour les galaxies massives Régions extérieures (N petit) T 2B > ans two-body relaxation pas important Effet de relaxation: ségrégation spatiale et en vitesses des galaxies selon leur masse

Faculté des arts et des sciences Département de physique Temps de collision T coll = temps moyen entre les collisions dune galaxie avec un autre membre de lamas T coll = [2 1/2 v N R g 2 ] -1 ~10 9 ans[(v r /10 3 km/s)(N/10 3 Mpc -3 )(R g /10 kpc)] -1

Faculté des arts et des sciences Département de physique Temps de collision Dans les régions centrales dun amas régulier: T coll ~ ans pour R g ~ 10 kpc probabilité de mergers élevée Dans les régions peu dense damas réguliers ou dans les amas irréguliers (N < 10 2 Mpc -3 ) T coll > ans peu de chance de merger

Faculté des arts et des sciences Département de physique Masse & Densité centrale Masse totale dun amas (théo. du viriel) M = v 2 R e /G M ~ 0.7 x M sol x[(v r /10 3 km/s) 2 (R e /Mpc)] Densité centrale (sphère iso.) 0 = 9 v r 2 / 4 G R c 2 0 ~ 3 x M sol /Mpc 3 x [(v r /10 3 km/s)/(R c /0.25 Mpc)] 2

Faculté des arts et des sciences Département de physique M/L (centre des amas) (M/L) c = 2 0 R c / 0 (M/L) c = 9 v r 2 / 2 G 0 R c ~ 133 h 50 M sol /L sol x [(v r /10 3 km/s) \ /( 0 /10L sol pc -2 )(R c /0.25 Mpc)] Valeurs typiques: M ~ /-1 h M sol L ~ h M sol M/L ~ h 50 M sol /L sol ~ 200 h 50 M sol /L sol