Électricité et magnétisme (203-NYB) Chapitre 2: Le champ électrique

Slides:



Advertisements
Présentations similaires
Lycée Diderot Narbonne Bournet, Candas, Galaup 1S4
Advertisements

CINEMATIQUE.
LES LOIS DE NEWTON.
CONDENSATEURS – CHAMP ELECTRIQUE
CHAMP MAGNETIQUE.
LE CHAMP MAGNETIQUE 1 Mise en évidence du champ magnétique
2.5 Champ électrique produit par une distribution continue de charges.
Électrostatique: Les Forces
2. Mouvement et forces.
Physique mécanique (NYA)
Exemple synthèse (Chapitre 5)
Cours Électricité – Électronique MIP_B
Tome 2 – Chapitre 1 Tome 2 – Chapitre 2 (début)
De manière plus scientifique:
ELECTROSTATIQUE.
Deuxième Loi de Newton Chapitre 5.
HEFF Cours d’électricité 1 G. Barmarin
A-IV Le Potentiel Électrique Scalaire
Électricité et magnétisme (203-NYB) Chapitre 2: Le champ électrique
Plan Création d'un champ électrique Création d'un champ magnétique
VOXPOP Questions de concepts en vrac…. Voxpop Deux sphères uniformément chargées sont fixées solidement à des rondelles (tout en étant électriquement.
Magnétostatique- Chap.1
Électricité et magnétisme (203-NYB) Chapitre 4: Le potentiel électrique Le champ électrique donne la force agissant sur une unité de charge en un point.
Electricité 1er partie : Electrostatique I- La charge
CHAPITRE 4 LE POTENTIEL ÉLECTRIQUE.
Électricité et magnétisme (203-NYB) Chapitre 8: Le champ magnétique
Chapitre 3 Le mouvement circulaire
Points essentiels L’expérience d’Oersted;
Chapitre 4 L’inertie et le mouvement à deux dimensions
2.3 Le champ électrique et les conducteurs
Chapitre 2, Problème 2 Déterminer l’expression du champ électrique en un point P situé à une distance «z» sur l’axe d ‘un anneau uniformément chargé de.
CHAPITRE 3 LE THÉORÈME DE GAUSS.
CHAPITRE 8 LE CHAMP MAGNÉTIQUE.
Électricité et magnétisme (203-NYB) Chapitre 4: Le potentiel électrique Le champ électrique donne la force agissant sur une unité de charge en un point.
Physique mécanique (NYA)
MAGNETOSTATIQUE Hugues Ott
II- Loi de Biot et Savart
Electrostatique- Chap.2 CHAPITRE 2 CHAMP ELECTROSTATIQUE Objectif :
Potentiel électrostatique
Partie B ELECTROCINETIQUE OBJECTIFS:
L1 : Physique-Chimie-Mécanique-E2i
Electrostatique- Chap.1
Électricité et magnétisme (203-NYB) Chapitre 1: L’électrostatique
Électricité et magnétisme (203-NYB) Chapitre 2: Le champ électrique
Champ électrique – Tome 2 chapitre 2
9.1 Le champ magnétique crée par un long conducteur rectiligne
Électricité et magnétisme (203-NYB) Chapitre 9: Les sources de champ magnétique Dorsale médio-Atlantique.
ORIENTEES VERS LES POTENTIELS DECROISSANTS
10.1 L’induction électromagnétique
Électricité et magnétisme (203-NYB) Chapitre 4: Le potentiel électrique Le champ électrique donne la force agissant sur une unité de charge en un point.
Electrostatique - Magnétostatique- Induction Electromagnétique
Électricité et magnétisme (203-NYB) Chapitre 8: Le champ magnétique
Chapitre 2: Solutions à certains exercices D’autres solutions peuvent s’ajouter sur demande: ou
Électricité et magnétisme (203-NYB) Chapitre 8: Le champ magnétique
Électricité et magnétisme (203-NYB) Chapitre 1: L’électrostatique
Chapitre 11 : Mouvements (cinématique) et première loi de Newton.
203-NYB Chapitre 10: Solutions à certains exercices D’autres solutions peuvent s’ajouter sur demande: ou
5. Chute libre et accélération
Conducteurs en équilibre CHAPITRE 4
13.Moment d’inertie et accélération angulaire
9.1 Le champ magnétique créé par un long conducteur rectiligne
 La vitesse  Le déplacement  Le temps  L’accélération.
Électricité et magnétisme (203-NYB) Chapitre 2: Le champ électrique
S1 Champ magnétique.
Magnétostatique Mahboub Oussama.
L’électrostatique dans le vide
Électricité et magnétisme (203-NYB) Chapitre 2: Le champ électrique.
Equilibre d’un solide.
Électricité et magnétisme (203-NYB) Chapitre 1: L’électrostatique
Chapitre 2: Solutions à certains exercices D’autres solutions peuvent s’ajouter sur demande: ou
Transcription de la présentation:

Électricité et magnétisme (203-NYB) Chapitre 2: Le champ électrique

2.1 Le champ électrique On dit qu'une charge électrique crée un champ électrique dans l'espace qui l'entoure. Une deuxième particule chargée ne va pas interagir directement avec la première, mais plutôt réagir au champ dans lequel elle se trouve. En tout point de l’espace, le vecteur champ électrique est défini comme étant la force par unité de charge placé en ce point. L'unité SI de champ électrique est le newton par coulomb (N/C). Le champ est orienté dans le même sens que la force agissant sur une charge d'essai positive. Si la charge q est positive, la force électrique agissant sur elle est orientée dans le même sens que le vecteur champ ; si la charge q est négative, la force agissant sur elle est orientée dans le sens opposé au vecteur champ.

2.1 (suite) Exemple Une charge ponctuelle est soumise à une force électrique Décrivez le champ électrique responsable de cette force. Quelle serait la force exercée sur une charge ponctuelle de située au même point?

2.1 (suite) Exemple E2 Par beau temps, on observe à la surface de la Terre un champ électrique de 120 N/C orienté vers le bas. (a) Quelle est la force électrique agissant sur un proton dans un tel champ? (b) Quelle est l’accélération du proton? (c) Quelle est la force électrique agissant sur un électron dans un tel champ? (b) Quelle est l’accélération de l’électron? La force sur une charge positive est de même sens que le champ électrique. La force sur une charge négative est de sens contraire au champ électrique.

2.1 (suite) Champ électrique d’une charge ponctuelle: Principe de superposition: le champ total résultant de plusieurs charges ponctuelles est la somme des champs de chacune des charges individuelles. Méthode de résolution: Faire un diagramme et tracer les vecteurs champs. Déterminer le module du champ dû à chacune des charges. Additionner ces vecteurs.

2.1 Exemple (E5) + _ L

2.2 Les lignes du champ électrique Les lignes de champ électrique vont toujours des charges positives vers les charges négatives : les charges positives «émettent » des lignes de champ et les charges négatives «absorbent » des lignes de champ. Le nombre de lignes qui partent d'une charge ou qui se dirigent vers elle est proportionnel à la grandeur de la charge. La direction du champ en un point est tangente à la ligne de champ L'intensité du champ est proportionnelle à la densité des lignes de champ, c'est-à-dire au nombre de lignes traversant une surface unitaire normale au champ. Les lignes de champ ne se coupent jamais: sinon, à l'endroit où elles se couperaient, le champ aurait deux directions différentes! http://www.cco.caltech.edu/~phys1/java/phys1/EField/EField.html

2.3 Le champ électrique et les conducteurs Trois propriétés des conducteurs à l’équilibre électrostatique: Le champ électrique résultant à l’intérieur d’un conducteur est nul (Un champ non nul produirait un déplacement de charges qui aurait pour effet de l’annuler). Une cage de Faraday est une cavité dans un conducteur où E = 0. Le champ électrique extérieur à proximité d’un conducteur est perpendiculaire à la surface du conducteur (la composante parallèle du champ doit être nulle sinon elle produirait un déplacement de charges) La charge portée par un conducteur se répartit sur sa surface extérieure (sinon il y aurait un champ interne).

2.4 Les charges en mouvement dans un champ électrique uniforme Un électron dans un champ électrique uniforme E subit une accélération constante a = eE/m Canon à électrons Dans le tube a rayons cathodiques, les électrons subissent une accélération en « y » mais pas en « x » (similaire au mouvement balistique) Tube a rayons cathodiques

2.4 (suite) Exemple L’électron se déplace a vitesse constante en « x », ce qui permet de calculer le temps nécessaire pour qu’il traverse les plaques. Pendant ce même temps, l’électron subit une accélération constante en « y ». La valeur de cette accélération (et donc de E) détermine la distance parcourue en « y ». E30

2.5 Les distributions de charges continues On peut diviser la charge de l'objet en petits éléments infinitésimaux dq qui peuvent être considérés comme des charges ponctuelles. Pour trouver le champ électrique total, il faut faire la somme (l'intégrale) de tous les éléments dE, en tenant compte de la nature vectorielle du champ. Pour décrire la distribution de charge, on utilise une densité de charge: - Densité linéique λ = q/L (C/m) dq = λ dL (λ: Lambda) - Densité surfacique σ = q/A (C/m2) dq = σ dA (σ: Sigma) - Densité volumique ρ = q/V (C/m3) dq = ρ dV (ρ: Rhô)

2.5 (suite) Le champ électrique d’un fil uniformément chargé

2.5 (suite) Exemple d’un fil uniformément chargé E38 Trouvons le champ électrique Ey à 20 cm du centre d’une tige de 10 cm ayant une densité linéique de charge de 2 µC/m. 5 cm 20 cm

2.5 (suite) Le champ électrique sur l’axe d’un disque uniformément chargé. Question: Montrer que lorsque , l’équation de Ey se réduit au cas d’une charge ponctuelle

2.5 (suite) Le champ électrique d’une plaque infinie uniformément chargée

2.6 Les dipôles Un dipôle électrique est constitué de deux charges de même grandeur mais de signes opposés séparées par une certaine distance. Les molécules comme le H2O ont un dipôle permanent et sont dites « polaires ». Les molécules non-polaires peuvent avoir un dipôle induit par un champ électrique. Un dipôle subit un moment de force dans un champ électrique (Fig. 2.33) ainsi qu’une force nette dans un champ électrique non uniforme (Fig. 2.37).