Cours 1 La nature géologique des continents - suite SVT – Terminale S – Thème 1B – Le domaine continental et sa dynamique 1B1 – Caractérisation du domaine continental Cours 1 La nature géologique des continents - suite
II- Les continents, des ensembles en équilibre TP 2 – Les continents (2) – des ensembles en équilibre Qu. 1 : Stations Position géographique Vitesse de déplacement en altitude (mm/an) LROC POTS BUDP VAAS SODA SKE0 La Rochelle - France Postdam – Allemagne Copenhague - Danemark Vaasa – FInlande Sodankyla – FInlande Skelleftea – Suède 0,06 0,08 1,32 8,9 6,8 11,7 Qu. 2 : On remarque que les balises GPS situées autour de la mer Baltique enregistrent un fort déplacement vertical (proche de 1 cm/an), tandis que celles en Europe centrale ne bougent pas ! Comment expliquer ces mouvements verticaux ?
A- L’équilibre isostatique Qu. 3 : Pour expliquer ce fait surprenant, reprenons une des premières découvertes des Sciences Physiques : EUREKÂ !! Tout corps plongé dans un fluide subit une force verticale égale au poids du volume déplacé C’est la Poussée d’Archimède
En langage mathématique Un corps exerce une force, son poids P Le « fluide » réagit avec une poussée égale, mais en sens opposé Cette poussée va s’établir au niveau d’une « surface de compensation »
En langage géologique maintenant La lithosphère exerce son poids P Croute continentale LITHOSPHERE …sur l’asthénosphère, qui se comporte comme un fluide et réagit avec une poussée égale, mais en sens opposé Manteau lithosphérique ASTHENOSPHERE Cette poussée va s’établir au niveau d’une « surface de compensation », par exemple la base de la lithosphère à 100 km de profondeur (c’est une surface virtuelle qui n’a de sens que pour le calcul)
La lithosphère est dite en équilibre isostatique Le concept de l’isostasie énonce que la lithosphère est en équilibre, car elle exerce la même force (le même poids) à tout endroit de la surface de compensation Altitude 0 (~niveau de la mer) = = Surface de compensation La lithosphère est dite en équilibre isostatique
Simplifions nous les calculs à venir… Le vecteur du champ de pesanteur g étant égal partout au niveau de la surface de compensation, on peut simplifier et ne pas l’inclure dans tous nos calculs Du coup , il ne s’agit plus que de comparer des masses Comment déterminer la masse de la lithosphère ? Mais sur quel volume raisonner ? Faisons simple, choisissons à chaque fois une colonne virtuelle de section carrée mesurant 1m x1m. Et la, V = 1 x 1 x h, il nous reste qu’a considérer les hauteurs
Or, la lithosphère est un mélange ! Nous avons ici de la croute 1 m 1 m hcroûte Qu. 4 : Séparés par la discontinuité de Mohorovičić, ou Moho hML Et là, du manteau, qualifié de lithosphérique, puisque solidaire de la lithosphère Surface de compensation = base de la lithosphère = 100 km
Qu. 5 : Quelle est la profondeur du Moho ? On le sait par l’étude des données sismiques Pour la station OG02 – H = 32,14 km Pour les calculs à venir, on considérera une profondeur de 30 km comme valeur moyenne sous les continents
Qu 6. Calcul 1 : Mtotale = Mcroûte + MML Avec l’altitude moyenne des continents à 300 m au dessus du niveau 0 hcroûte = 30300 m ρcroûte = 2700 kg/m3 Mcroûte continentale = 81,81 106 kg hMant.litho = 70000 m ρML = 3300 kg/m3 Mmanteau lithosphérique = 231 106 kg Mlithosphère = 312,81 106 kg
B- Montagnes et racines crustales Considérons le Tibet, avec ses 5000 mètres d’altitude moyenne Mcroûte continentale = 94,5 106 kg hcroûte-Tibet = 35000 m Mlithosphère + 5 km Tibet = 325,5 106 kg > 312,81 106 kg Qu. 7 : On a un excès de masse du fait du supplément de croûte continentale. Or la masse au niveau de la surface de compensation sous le Tibet devrait la même qu’ailleurs. Comment cet excès est il compensé ?
On parle de Racine Crustale L’excès de masse du à l’altitude doit être compensé par l’existence d’un supplément de matériel peu dense en profondeur à la place de manteau très dense +4700 mètres supplémentaire +300 mètres Altitude 0 (~niveau de la mer) + ?? mètres supplémentaire On parle de Racine Crustale Surface de compensation
Qu. 8 - Calcul 2 : Déterminer l’épaisseur de la racine crustale, la croute continentale supplémentaire sous un relief ρcroûte = 2700 kg/m3 ρML = 3300 kg/m3 5000 m 30000 m Mlithosphère = 312,81 106 kg Mlithosphère = ρCChCC + ρMLhML Racine crustale x mètres hcroûte = 35000 + x x = 21150 mètres hML = 70000 - x Manteau lithosphérique Il existe donc une racine crustale d’au moins 21 km sous le Tibet.
Qu. 9: Et si on change la nature de la croute Qu. 9: Et si on change la nature de la croute ? Remplaçons le granite de la CC par les basaltes et gabbros de la CO Altitude 0 (~niveau de la mer) 30000 m ρcroûte cont = 2700 kg/m3 ρ croûte océanique = 2850 kg/m3 70000 m Surface de compensation Mlithosphère = 312 106 kg Mlithosphère = 316,5 106 kg !!
Qu. 10: L’excès de masse est donc compensé par une moindre épaisseur de croûte océanique Men excès = 4.5 106 kg hen moins = 1578 m Altitude 0 (~niveau de la mer) -1578 m Surface de compensation
Qu. 11 : Tache complexe = déterminer la profondeur moyenne de l’océan : Altitude 0 (~niveau de la mer) hocéan = 4760 m hocéan ρ eau= 1000 kg/m3 3000 m ρ Sédiments = 2000 kg/m3 7000 m 100000 m ρ Croûte océanique = 2850 kg/m3 ρM. Lithosphérique = 3300 kg/m3 100000 – 7000 – 3000 – hocéan Surface de compensation Mlithosphère = 312 106 kg = ρeauxhocéan + + ρsédx3000 + ρCox7000 + ρML x(90000-hocéan )
Rappelez vous… La répartition des altitudes, dite bimodale, qui servit d’argument à Wegener dans le cadre de sa théorie, s’explique par ces calculs d’isostasie. Selon les données disponibles, on peut trouver encore un écart entre la valeur mesurée et la valeur calculée, car il existe un phénomène supplémentaire Il s’agit de la subsidence, l’enfoncement supplémentaire lié à la fois au poids des sédiments accumulés et à l’épaississement de la L.O. au fur et a mesure de l’éloignement de la dorsale
Lors du dernier maximum glaciaire, il y a avait une épaisse couverture glaciaire sur la Scandinavie Et la disparition de cette masse entraine un soulèvement du continent, dit glacio-isostatique (ou rebond post-glaciaire)