Cycle de combustible nucléaire - Extraction et concentration -

Slides:



Advertisements
Présentations similaires
L’énergie Nucléaire et les Déchets
Advertisements

La gestion des déchets radioactifs en France
Centrale thermique nucléaire
Les besoins énergétiques
L’EAU SUR NOTRE PLANETE
LES ENERGIES RENOUVELABLES
Les Énergies Capter et Stocker le Carbone « C.C.S »
Les Energies Non Renouvelable.
ENERGIE NON RENOUVELABLE
Rachel Vanier Elyse Potvin et Cap sur Mars présentent.
Concepts – Les systèmes hydrographiques (l’eau de notre planète)
Les caractéristiques de l’eau
la science derrière les miroirs
Richesse du sous-sol burkinabè
Bonnes pratiques Gestion des terres excavées
Les besoins énergétiques
L’énergie Nucléaire Par: Matthew, Georgia, et Haley
Le pouvoir nucleare Par Chris Brake et Meghan Waterman.
Traitements des eaux usées industrielles
Les enjeux du nucléaire (2)
Sources de rayonnements
Les 2 grandes familles de sources d’énergie
désintégrations radioactives
et les types de rayonnement
Bases de Physique Nucléaire - 2
Les parfums FM Group.
Grandeurs radiométriques & Coefficients d’Interaction
Le point sur le captage et le stockage du CO2.. Qu’est-ce que le CO2 ? Il s’agit du gaz carbonique obtenu par combustion du carbone dans l’air.
Colloque IRSN – Ministère de l’éducation nationale Gestion des résidus de traitement de minerais d’uranium 12 et 13 janvier 2006.
Sources de rayonnements Cycle du combustible nucléaire
IAEA Sources de rayonnements cycle du combustible - Retraitement - Jour 4 – Presentation 8 (2) 1.
Répartition des énergies en fonction des années
Sûreté dans l’industrie nucléaire Catégories JeopardyJeopardy Final SÛRETÉ DES RÉACTEURS DÉCHETS NUCLÉAIRES PROTECTION DE L’ENVI-
Le secteur carrier: un monde en (r)évolution CRAEC 25 avril 2008 INCITEC Ir Gérald GOSSELIN.
IAEA Sources de rayonnements Cycle du combustible nucléaire – Enrichissement- Jour 4 – Leçon 6(2) 1.
IV.1) Filtrage dans la bande intrasaisonnière application au MAA Pour extraire les signaux à jours identifiés dans le Spectre de M, on « filtre »
L’extraction des minéraux
II. Méthodes innovantes
ppt de révision - t3 : éNERGIE
Global warming. REALLY?!? North America produces 25% of all CO 2 emmission wordlwide.
Biggest Diamond Mining Unit...a true wonder!! Jetez un coup d'oeil sur la plus grande mine à ciel ouvert de diamant du monde. Mirny, Russie, Sibérie est.
Les Richesses minérales du Canada
Élaborer par: Jannet Mahfoudhi
École normale ,Morlanwelz, , 2009
Interaction des rayonnements avec la matière- 5
IAEA International Atomic Energy Agency Réglementation 2ème partie Principes fondamentaux et définitions Jour – présentation 5 (2)
Détection et mesure des rayonnements ionisants -2
Sources de rayonnements Cycle du combustible – Vue générale
1 Le Monde. Dossiers&Documents Septembre 2007 Eric SERRES Formateur IUFM.
Interaction des rayonnements avec la matière - 6
Interaction des rayonnements avec la matière- 1
Cycle du combustible nucléaire Production de l'électricité
Rappel des principes fondamentaux
IAEA Sources de rayonnements Réacteurs de Recherche Jour 4 – Leçon 4 1.
Chaines de décroissance radioactive et Equilibre
Présentation du Site de Dommary - Baroncourt
Erasmus University of Rotterdam
Sources de rayonnements
PRODUCTION D’ENERGIE ELECTRIQUE
Vue de la ville : 1 cm → 100 m Organisation de la ville : Zone agricole zone commercial et quartier d’affaire Zone résidentiel 1 cm → 90 m.
Les systèmes hydrographiques (l’eau de notre planète)
Interaction des rayonnements avec la matière- 2
Interaction des rayts. avec la matière- 4 Buildup (Accumulation) &
IAEA Sources Rayonnements - Cycle du Combustible - Elimination des Déchets de Haute Activité Jour 4 - Leçon 8 (3) 1.
IAEA Interaction des rayonnements avec la matière- 2 Particules chargées (Particules Béta) Jour 2 – Leçon 2 1.
Transcription de la présentation:

Cycle de combustible nucléaire - Extraction et concentration - Sources de rayonnements Cycle de combustible nucléaire - Extraction et concentration - Jour 4 – Leçon 5 (2)

Extraction Mining is the first step in the process of providing the natural uranium feed material for use as a fuel.

Techniques d’extraction Excavation Mines à ciel ouvert Mines souterraines Lixiviation in situ Both excavation and in situ techniques are used to recover uranium. Excavation may be underground or open pit mining.

Mines à ciel ouvert(Surface) In general, open pit mining is used where deposits are close to the surface. Open pit mines require large holes on the surface, larger than the size of the ore deposit, since the walls of the pit must be sloped to prevent collapse. As a result, the quantity of material that must be removed in order to access the ore may be large.

Mines souterraines underground mining is used for deep deposits, typically greater than 120 m deep. Underground mines have relatively small surface disturbance and the quantity of material that must be removed to access the ore is considerably less than in the case of an open pit mine. In the case of underground uranium mines, special precautions, consisting primarily of increased ventilation, are required to protect against airborne radiation exposure. Généralement supérieure à 120 m de profondeur .. Questions de Ventilation

Minerai d’Uranium Uranium sous forme de sable The appearance of uranium ore differs depending on its origin. Uranium sous forme de sable

Lixiviation In Situ Installation de Production injection tête de puits An increasing proportion of the world’s uranium now comes from in situ leaching (ISL), where oxygenated groundwater is circulated through a very porous orebody to dissolve the uranium and bring it to the surface. ISL may be conducted with slightly acid or with alkaline solutions to keep the uranium in solution. The uranium is then recovered from the solution as in a conventional mill. Injection champ de captage lixiviation in situ (ISL), où la nappe phréatique oxygénée est mise en circulation à travers un corps de minerai très poreux à dissoudre l'uranium et l'amener à la surface

Méthodes d’extraction de l’Uranium Méthode Production mondiale (%) Souterrain 28 à ciel ouvert 20 lixiviation In Situ (ISL) 45 Dérivés 7 Total 100 The decision as to which mining method to use for a particular deposit is governed by the nature of the orebody, safety and economic considerations. Source:World Nuclear Association (WNA) http://www.world-nuclear.org/info/Nuclear-Fuel-Cycle/Mining-of-Uranium/World-Uranium-Mining-Production/

percentage of world demand* Mines de Production d’Uranium Country 2005 2006 2007 2008 2009 2010 2011 2012  Kazakhstan 4357 5279 6637 8521 14020 17803 19451 21317 Canada 11628 9862 9476 9000 10173 9783 9145 8999 Australia 9516 7593 8611 8430 7982 5900 5983 6991 Niger (est) 3093 3434 3153 3032 3243 4198 4351 4667 Namibia 3147 3067 2879 4366 4626 4496 3258 4495 Russia 3431 3262 3413 3521 3564 3562 2993 2872 Uzbekistan 2300 2260 2320 2338 2429 2400 2500 USA 1039 1672 1654 1430 1453 1660 1537 1596 China (est) 750 712 769 827 885 1500 Malawi   104 670 846 1101 Ukraine (est) 800 840 850 890 960 South Africa 674 534 539 655 563 583 582 465 India (est) 230 177 270 271 290 400 385 Brazil 110 190 299 330 345 148 265 231 Czech Republic 408 359 306 263 258 254 229 228 Romania (est) 90 77 75 Germany 94 65 41 8 51 50 Pakistan (est) 45 France 7 5 4 6 3 total world 41 719 39 444 41 282 43 764 50 772 53 671 53 493 58 394 tonnes U3O8 49 199 46 516 48 683 51 611 59 875 63 295 63 084 68 864 percentage of world demand* 65% 63% 64% 68% 78% 85% 86% Source:World Nuclear Association (WNA) http://www.world-nuclear.org/info/Nuclear-Fuel-Cycle/Mining-of-Uranium/World-Uranium-Mining-Production/

Plus grandes mines d’uranium 2011 Country Main owner Type Production (tU) % of world McArthur River Canada Cameco underground 7686 14 Olympic Dam Australia BHP Billiton by-product/ underground 3353 6  Arlit Niger Somair/ Areva open pit 2726 5 Tortkuduk Kazakhstan Katco JV/ Areva ISL 2608 Ranger ERA (Rio Tinto 68%) 2240 4 Kraznokamensk Russia ARMZ 2191 Budenovskoye 2 Karatau JV/Kazatomprom-Uranium One 2175 Rossing Namibia Rio Tinto (69%) 1822 3 Inkai Inkai JV/Cameco 1602 South Inkai Betpak Dala JV/ Uranium One 1548 Top 10 total    27,951  52% Source:World Nuclear Association (WNA) http://www.world-nuclear.org/info/nuclear-fuel-cycle/mining-of-uranium/uranium-mining-overview/

Extraction des minerais Milling, which is generally carried out close to a uranium mine, extracts the uranium from the ore. La concentration, qui est généralement réalisée à proximité d'une mine d'uranium, extrait de l'uranium à partir du minerai.

Traitement du minerai En usine, le minerai est concassé et broyé en fines particules. L'uranium est extrait du minerai broyé et concassé sur place par lixiviation, dans lequel soit un acide fort ou une solution alcaline forte est utilisée pour dissoudre l'uranium à partir de la roche des déchets. L'uranium est ensuite récupéré de la solution et on précipite sous forme d'oxyde d'uranium (U3O8) concentré parfois appelé "yellowcake" At the mill the ore is crushed and ground to a fine slurry. The uranium is extracted from the crushed and ground‑up ore by leaching, in which either a strong acid or a strong alkaline solution is used to dissolve the uranium from the waste rock. It is then recovered from solution and precipitated as uranium oxide (U308) concentrate sometimes known as "yellowcake"

Traitement du minerai At the mill the ore is crushed and ground to a fine slurry. The uranium is extracted from the crushed and ground‑up ore by leaching, in which either a strong acid or a strong alkaline solution is used to dissolve the uranium from the waste rock. It is then recovered from solution and precipitated as uranium oxide (U308) concentrate sometimes known as "yellowcake"

Yellowcake Le yellowcake est expédié à partir des usines sous une forme solide granulaire. Le mélange d'oxydes d'uranium qui n'est pas vraiment jaune mais presque noir vert olive. Le yellowcake contient en général plus de 80% d'uranium. Le minerai d'origine contient aussi moins de 0,1% d'uranium. Environ 200 tonnes d'U3O8 est nécessaire pour garder une centrale nucléaire de (1000 MWe) produisant de l'électricité pendant un an. Yellowcake is really a mixture of uranium oxides that is not really yellow but almost black olive green and shipped from the mills in a granular solid form that varies in color from yellowish to an almost black olive green, depending on the mineral it was found in and the processing (most notably, the calcination temperature). 'yellowcake' generally contains more than 80% uranium. The original ore may contains as little as 0.1% uranium. After drying and usually heating it is packed in 200‑litre drums as a concentrate. About 200 tonnes of U3O8 is required to keep a large (1000 MWe) nuclear power reactor generating electricity for one year.

Yellowcake Yellowcake is really a mixture of uranium oxides that is hardly ever yellow any more. It is shipped from the mills in a granular solid form that varies in color from yellowish to an almost black olive green, depending on the mineral it was found in and the processing (most notably, the calcination temperature). 'yellowcake' generally contains more than 80% uranium. The original ore may contains as little as 0.1% uranium. After drying and usually heating it is packed in 200‑litre drums as a concentrate. About 200 tonnes of U3O8 is required to keep a large (1000 MWe) nuclear power reactor generating electricity for one year.

Les résidus de traitement d'uranium The remainder of the ore, containing most of the radioactivity and nearly all the rock material, becomes tailings, which are emplaced in engineered facilities near the mine (often in a mined-out pit). Tailings contain long‑lived radioactive materials in low concentrations and toxic materials such as heavy metals; however, the total quantity of radioactive elements is less than in the original ore, and their collective radioactivity will be much shorter‑lived. These materials need to be isolated from the environment. Radon emanation from mill tailings is a major concern. For example, if mill tailings were to be used in the construction industry, elevated levels of radon emission would result in the structures built. A variation of this actually occurred in the US some time ago when residue from the phosphate industry was used to refill the excavation. Homes were constructed on top resulting in elevated radon levels.

Risques radiologiques liés à la concentration de l’Uranium Les émissions de poussières et le radon de broyage du minerai, le tri et le stockage Poussière pendant le séchage de yellowcake dans la zone de conditionnement Les particules soufflées par le vent et l'infiltration du radon de l'aire des résidus

Références World Nuclear Association (WNA) http://www.world-nuclear.org/info/Nuclear-Fuel- Cycle/Mining-of-Uranium/World-Uranium-Mining-Production/ http://www.world-nuclear.org/info/nuclear-fuel-cycle/mining- of-uranium/uranium-mining-overview/ International Atomic Energy Agency, Postgraduate Educational Course in Radiation Protection and the Safety of Radiation Sources (PGEC), Training Course Series 18, IAEA, Vienna (2002)