SURSAUTS RADIO ET INTERACTION IO-JUPITER Master Sciences De l’Univers, Environnement, Ecologie Parcours Sciences Planétaires SURSAUTS RADIO ET INTERACTION IO-JUPITER Sébastien Hess Stage effectué sous la direction de: Philippe Zarka (Obs. de Paris - LESIA) et Fabrice Mottez (CETP)
Sursauts radio et interaction Io-Jupiter Introduction Jupiter émet un rayonnement radio décamétrique intense Certaines émissions sont liées à l’interaction entre Io et Jupiter Parmi elles, les sursauts millisecondes Ceux-ci présentent une dérive dans le plan temps-fréquence
Sursauts radio et interaction Io-Jupiter Introduction Le mouvement adiabatique d’électrons s’éloignant de la planète et émettant à la fréquence cyclotron locale a été invoqué pour expliquer la dérive des sursauts millisecondes [Ellis, 1965] Le premier objectif de ce stage est de vérifier la validité de cette hypothèse
Sursauts radio et interaction Io-Jupiter Introduction Les ruptures de pente dans le plan temps-fréquence peuvent traduire l’existence de structures accélératrices localisées le long du tube de flux reliant Io a Jupiter Le second objectif est de rechercher la présence de telles structures et de les étudier
Sursauts radio et interaction Io-Jupiter Sommaire Interaction Io-Jupiter Observations Description du modèle adiabatique Méthodes d’analyse des données Validation du modèle adiabatique Sauts de potentiel Conclusions et Perspectives
Sursauts radio et interaction Io-Jupiter
Sursauts radio et interaction Io-Jupiter Période du tore = période de Jupiter = 9 heures 55, 5 minutes Période orbitale de Io = 42 heures 27,5 minutes Champ électrique de convection en MHD idéale: E = -vB Courant / Ondes d’Alfvén induits électrons accélérés vers Jupiter Les électrons réfléchis (miroir magnétique) émettent des ondes radio à la fréquence cyclotron locale
Sursauts radio et interaction Io-Jupiter OBSERVATIONS
Sursauts radio et interaction Io-Jupiter Observations On dispose de 230 spectres dynamiques d’une durée de 20 secondes (total = 1h15m) Enregistrés par le réseau décamétrique de Nancay (144 antennes) avec un spectromètre acousto-optique Résolutions de 3 ms et 50 kHz Sursauts détectés entre 12 MHz et 40 MHz
Sursauts radio et interaction Io-Jupiter DESCRIPTION DU MODELE ADIABATIQUE
Sursauts radio et interaction Io-Jupiter Description du modèle adiabatique Modèle adiabatique sans champ électrique Ellis (1965) Dérive des sursauts radio: df/dt = (df/ds) (ds/dt) = -K(,) fce v// Mouvement adiabatique: conservation de = v2/fce = v2/fmiroir Pas de champ électrique: conservation de v2 Energie parallèle: v2// = v2 - v2 = v2 - .fce Angle d’attaque équatorial: angle entre v et B à l’équateur sin2eq = /v2.fce(équateur) = fce(équateur) / fmiroir
Sursauts radio et interaction Io-Jupiter Description du modèle adiabatique Modèle adiabatique sans champ électrique Représentations Dérive: df/dt = -K(, )fce √ (v2-.fce) Energie cinétique parallèle: v2// = v2 - v2 = v2 - .fce E = 3.8 keV eq =2.3° E = 3.8 keV eq =2.5° E = 4.5 keV eq =2.3° même même pente
Sursauts radio et interaction Io-Jupiter Description du modèle adiabatique Modèle adiabatique avec champ électrique Potentiel proportionnel à la fréquence cyclotron v2// = v2 -v2 = v2 - .fce v2 = v02 + 2e/me v2// = v02 + (2e/med/df -).fce avec d/df =constante Dans la représentation E//(f), la dérive est représentée par une droite, comme dans le modèle sans champ, mais sa pente peut être positive
Sursauts radio et interaction Io-Jupiter METHODES D’ANALYSE DES DONNEES
Sursauts radio et interaction Io-Jupiter Méthodes d’analyse des données Reconnaissance des sursauts Identification des sursauts millisecondes (Le Goff 1999)
Sursauts radio et interaction Io-Jupiter Méthodes d’analyse des données Mesure de la dérive Mesure de la dérive par régression linéaire sur un intervalle f autour de la fréquence considérée Topologies complexes prises en compte Validation sur un sursaut modélisé
Sursauts radio et interaction Io-Jupiter VALIDATION DU MODELE ADIABATIQUE
Sursauts radio et interaction Io-Jupiter Validation du modèle adiabatique Etudes précédentes Décroissance à haute fréquence au dessus de 32 MHz dans une seule étude antérieure Distribution de dérives approximativement adiabatique avec: E = 5.3 ± 2.2 keV eq ~ 2.8° Variation brutale de la dérive au-dessus de 22-23 MHz Zarka et al. (1996)
Sursauts radio et interaction Io-Jupiter Validation du modèle adiabatique Etude de l’ensemble des spectres dynamiques 5 106 mesures de df/dt Résolution temporelle = 3 msec Reconnaissance et analyse des sursauts plus performantes Décroissance de df/ft confirmée à partir de 30 MHz Distribution de dérives approximativement adiabatique avec: E = 4.5 ± 1.1 keV eq ~ 2.7°
Sursauts radio et interaction Io-Jupiter Validation du modèle adiabatique Etude des spectres dynamiques individuels Dérives adiabatiques sur toute la gamme de fréquences
Sursauts radio et interaction Io-Jupiter Validation du modèle adiabatique Etude des spectres dynamiques individuels Dérives adiabatiques sur toute la gamme de fréquences Dérives adiabatiques par intervalles de fréquences Reconnaissance automatique des « segments adiabatiques »
Sursauts radio et interaction Io-Jupiter Validation du modèle adiabatique Etude des segments adiabatiques individuels: Énergie et angle d’attaque équatorial Energie moyenne: 3.9 ± 0.9 keV Angle d’attaque équatorial moyen: 2.3° ± 0.2°
Sursauts radio et interaction Io-Jupiter Validation du modèle adiabatique Etude des segments adiabatiques individuels: Distribution des vitesses à l’équateur V//,eq = v.coseq V,eq = v.sineq Modèle adiabatique sans champ électrique le bord du cône de perte devrait passer par l’origine
Sursauts radio et interaction Io-Jupiter Validation du modèle adiabatique Etude des segments adiabatiques individuels: Distribution des vitesses à l’équateur Ajout d’un potentiel électrique proportionnel à la fréquence cyclotron pour V=3 kV, le bord du cône de perte passe par l’origine fmiroir=40 MHz
Sursauts radio et interaction Io-Jupiter Validation du modèle adiabatique Etude des segments adiabatiques individuels: Distribution des vitesses à l’équateur Ajout d’un potentiel électrique proportionnel à la fréquence cyclotron pour V=3 kV, le bord du cône de perte passe par l’origine fmiroir=15 MHz fmiroir=40 MHz
Sursauts radio et interaction Io-Jupiter Validation du modèle adiabatique Etude des segments adiabatiques individuels: Variations de E et eq avec la fréquence sin2eq=feq/fmiroir Diminution de l’énergie accélération parallèle des électrons émetteurs ?
Sursauts radio et interaction Io-Jupiter Validation du modèle adiabatique Etude des segments adiabatiques individuels: Décroissance de E(f) Avant accélération les particules 1 et 2 ont la même fréquence miroir Après accélération, la particule 1, de plus faible énergie, a une fréquence miroir plus élevée
Sursauts radio et interaction Io-Jupiter SAUTS DE POTENTIEL
Sursauts radio et interaction Io-Jupiter Sauts de potentiel Sauts de potentiel : pourquoi en chercher ? Prédits par les simulations numériques Observés in-situ dans les zones aurorales terrestres Su et al. (2003)
Sursauts radio et interaction Io-Jupiter Sauts de potentiel Sauts de potentiel détectés Segments parallèles même accélération purement parallèle « saut localisé » si transition < 2 MHz 36 sauts ont été comptabilisés
Sursauts radio et interaction Io-Jupiter Sauts de potentiel Sauts de potentiel : amplitude et localisation Amplitude moyenne = 0.9 keV 75% des sauts concentrés entre 22 MHz et 28 MHz variations brutales de la dérive dans [Zarka et al., 1996]
Sursauts radio et interaction Io-Jupiter Sauts de potentiel Sauts de potentiel : durée de vie Structures ~ stables sur plusieurs dizaines de minutes 14/04/1995
Sursauts radio et interaction Io-Jupiter Conclusions La dérive moyenne des sursauts millisecondes est compatible avec le modèle adiabatique La distribution des dérives suggère une ddp de 3 kV distribuée entre Io et Jupiter On a mis en évidence des sauts de potentiel parallèles localisés (doubles-couches fortes) … … de durée de vie ≥ quelques dizaines de minutes