Jean-Louis Roujean et al. CNRM/GMME, Météo-France

Slides:



Advertisements
Présentations similaires
Guillaume Thirel CNRM/GMME/MOSAYC Thèse encadrée par Éric Martin
Advertisements

SURFEX Genèse Algorithme de Surfex Interface avec l’atmosphère
Copyright © 2010 Systematic Présentation des enjeux Europe et International 1 Jean-Luc Beylat, Vice-Président International Systematic.
Environmental Data Warehouse Cemagref, UR TSCF, TR MOTIVE 2011 – projet Miriphyque.
Bilan de carbone de l’écosystème forestier aquitain de pin maritime
Détection des ouragans dans une version couplée dARPEGE basculé/étiré Fabrice Chauvin Anne-Sophie Daloz et Jean-François Royer CNRS/GAME, Météo-France,
Développement et gestion des codes SURFEX et ECOCLIMAP
Calval for land ice Part I D. Blumstein and F. Remy -Scientific objectives, requirements -- density of data depending on tracking mode - comparison with.
On-line resource materials for policy making Ex-Ante Carbon-balance Tool Food and Agriculture Organization of the United Nations, FAO Apprendre à utiliser.
Utilisation d’un SVAT, de la HR à la BR: étude d’impact
La prévision des climats futurs Hervé Le Treut Fiabilité et incertitude des modèles: lexemple des rétroactions atmosphériques. LMD Laboratoire de Météorologie.
TORs for sites B/O: purpose, process review, complete and validate characterization data Country-based groups with iIRT facilitators (+ nominate chairman,
Jean-Louis Dufresne, Jean-Yves Grandpeix LMD/IPSL; CNRS/UPMC Introduction à la.
Fig. 1. Mesozooplankton biomass (mg C m 3 ) in the upper 150 m water column along Line P during 4 cruises in 1996 and 1997.
Météorologie de l’Espace: Le système Ionosphère-Thermosphère
Avancées du code SURFEX
Avancées de SURFEX Patrick Le Moigne
Wala K. Maître Assistant Ecologie appliquée Université de Lomé
Assimilation des données satellitales dans les modèles éco-hydrologiques: stratégies et travaux en cours G. Boulet, B. Duchemin, P. Maisongrande, O. Merlin,
THE FRENCH INITIATIVE FOR THE CONGO BASIN Camille PINET IGN France International Space Data Coordination Group Meeting (SDCG‐5) ESRIN,
Jan Bogaert, Marie André,
Intercomparison of the ELDAS LSSs using the Rhône Aggregation Experimental Setup Aaron Boone, Florence Habets, Joel Noilhan, Bart Van den Hurk, Martin.
Unité 2 La grammaire d’Unité 2. L’accord o One must make agreement from the noun(s) to the verb: - Il coûte… - Elle coûte… - Ils coûtent… - Elles coûtent…
Surface Externalisée travail collectif de plusieures équipes du CNRM et du Laboratoire d'Aérologie P. Le Moigne.
Septembre 2011 DT.TN/ septembre 2011 Modèle TN Séminaire INSPIRE Occupation du Sol Séminaire INSPIRE.
Nereus Project, réunion Océano, Toulouse, 30/09/2008 Journée de rencontre Météo France/Mecator/Océan 14 Juin 2010 Cal/Val scientifique Mercator Océan 1.
Observation des concentrations et flux d’azote atmosphériques
Overview %%%%%%%%%%%% %%%%%%%%%%%% %%%%%%%%%%%% %%%%%%%%%%%% %%%%%%%%%%%% %%%%%%%
Observation des Surfaces Continentales par Altimétrie Radar
Overview %%%%%%%%%%%% %%%%%%%%%%%% %%%%%%%%%%%% %%%%%%%%%%%% %%%%%%%%%%%% %%%%%%%
PAPRIKA WP4: MODELLING THE INTERACTION BETWEEN SNOWPACK, RADIATION, AND THE ABSORBING MATERIAL DEPOSITED IN THE SNOW Hans-Werner Jacobi
Nereus Project, réunion Océano, Toulouse, 30/09/2008 Journée de rencontre Météo France/Mecator/Océan 14 Juin Validation des flux de surface radiatifs.
Research interests Viviane Gascon Vietnam Nurse scheduling Viviane Gascon and Éric Gagné.
Ordre des cours d’eau et zones humides : application à la dynamique spatio-temporelle des nitrates Sous-titre : De la nécessité de travailler à différentes.
Modélisation du CO2 atmosphérique: application et exercice d’intercomparaison. Estimation du transport adjoint Claire Sarrat, Thomas Lauvaux, Joël Noilhan,
Overview %%%%%%%%%%%% %%%%%%%%%%%% %%%%%%%%%%%% %%%%%%%%%%%% %%%%%%%%%%%% %%%%%%%
Utilisation de Formosat sur AMMA - MALI Laurent Kergoat Eric Mougin Valérie Demarez Pierre Hiernaux réunion utilisateurs de Formosat, 18 janvier 2006 Toulouse.
Response of Sahelian vegetation to climatic variability in West Africa Consequences for the Surface-Atmosphere interactions 1 Mougin E., 1 Hiernaux P.,
Atmospheric CO 2 modelling at the regional scale : The CarboEurope Regional Experiment Sarrat C; Noilhan J; Lacarrère P; Donier S; Gerbig C. Météo-France.
L’Hydrologie Continentale vu par T/P, ERS, GRACE, …
Overview %%%%%%%%%%%% %%%%%%%%%%%% %%%%%%%%%%%% %%%%%%%%%%%% %%%%%%%%%%%% %%%%%%%
par gravimétrie spatiale GRACE
Overview %%%%%%%%%%%% %%%%%%%%%%%% %%%%%%%%%%%% %%%%%%%%%%%% %%%%%%%%%%%% %%%%%%%
FINANCE Distribution des rentabilités Professeurr André Farber Solvay Business School Université Libre de Bruxelles.
JR Gros-Désormeaux, A. Cheula, D. Réchal, C. Révillion, , Réunion Caribsat Cartographie régionale d’occupation du sols des îles des Petites.
La Francophonie et le temps... Countries where French is spoken and the weather...
Pour Comparer.  plus _______ que  moins _______ que  aussi ______ que adjectif Il y a TROIS exemples.
Overview %%%%%%%%%%%% %%%%%%%%%%%% %%%%%%%%%%%% %%%%%%%%%%%% %%%%%%%%%%%% %%%%%%%
High resolution simulation of the South Asian monsoon using a variable resolution global climate model Journée MissTerre, novembre 2012 T.P Sabin,
23ème Conférence générale des poids et mesures Paris, novembre ème Conférence générale des poids et mesures Rapport du Comité Consultatif.
2007 General Meeting Assemblée générale 2007 Montréal, Québec 2007 General Meeting Assemblée générale 2007 Montréal, Québec Canadian Institute of Actuaries.
Overview %%%%%%%%%%%% %%%%%%%%%%%% %%%%%%%%%%%% %%%%%%%%%%%% %%%%%%%%%%%% %%%%%%%
Poursuivre la rénovation du Day Care Center À Biri qui accueille enfants. To continue the renovation of the Day Care Center in Biri that caters to.
Simulation d’un paysage urbain et étude des effets de la morphologie urbaine par transfert radiatif K. Khun, C. Codjia, F. Cavayas, Y. Bouroubi, J.-P.
French 1 Chapter 2 Grammar 2
Overview %%%%%%%%%%%% %%%%%%%%%%%% %%%%%%%%%%%% %%%%%%%%%%%% %%%%%%%%%%%% %%%%%%%
Réunion VURCA, 27 janvier 2011, CIRED, Paris Projet VURCA Tâche 3 : Vulnérabilité des villes aux canicules A.L. Beaulant, A. Lemonsu, S. Somot, V. Masson.
It’s.  Both C’est and Il est/Elle est can mean it’s.  There are specific times to use each.
Contractions with the Prepositions à and de. Differences and Similarities Faire du vélo Faire de la vidéo Jouer au golf Jouer aux cartes Each verb takes.
GAME - AUAT - CERFACS ENM-CIRED - GEODE GRECAU - IMT - ONERA Le projet ACCLIMAT a bénéficié d’une aide de la Fondation de Coopération Scientifique STAE.
3. Exemple détaillé: Estimation des émissions de N 2 0 Aurore Philibert Doctorante en statistique appliquée à l’agronomie Oracle Kick-off Meeting
QuitterPage suivante Réalisation de la carte d’utilisation des terres de la Tunisie à l’échelle 1/ en se basant sur des données nationales disponibles.
UNITÉ II: LEÇON 6 PARTIE B: LES MOIS ET LA DATE. LES MOIS DE L’ANNÉE janvier January.
1 Carte de flux turbulents de chaleur mesurés en surface pour une comparaison avec les modèles Oscar Hartogensis(1), F. Lohou(2), M. Lothon(2), Fleur Couvreux(3),
ACG (Adaptation to global Change)
The CNRM-CM5 global climate model: description and basic evaluation
CERES - WHEAT Realised by : Yassine ADRAB Supervised by: Dr. Abdellah ABOUDRARE National School of Agriculture Meknès
Backscattering bursts at Ka-band over land using SARAL data
The AquiFR hydrogeological modeling platform.
Le Climat : Un dialogue entre Statistique et Dynamique
Transcription de la présentation:

ECOCLIMAP-II a climatologic global database of ecosystems and surface parameters Jean-Louis Roujean et al. CNRM/GMME, Météo-France 42, avenue Gaspard Coriolis 31057 Toulouse cedex, France jean-louis.roujean@meteo.fr ECOCLIMAP is a land cover and surface parameters database specifically designed to serve the meteorological community: it aims at initializing and constraining surface models such as Méso-NH and Surfex. The first version was achieved in 2003, a second version is now ready for Europe.

Scientific Context & Objectives Better answering to climate users requirements Soil-Vegetation-Atmosphere Transfer (SVAT) model ISBA (used at Météo-France) adopted a ‘tile’ approach -> 12 vegetation types ECOCLIMAP database is twofold A land cover map of ecosystems (functionally homogeneous) Maps of land surface parameters (used for meteorological applications)  establish correspondance between vegetation types and ecosystems

ECOCLIMAP-I => ECOCLIMAP-II Land cover Maps UMD,IGBP,CORINE Surface parameters Soil types Temporal profiles NDVI 1 year NOAA/AVHRR Climate maps FIRS, Koeppe 215 ecosystems (global) 255 ecosystems (Europe) GLC2000, CORINE2000 7 years SPOT / VGT Monthly FAO 10-days

The database includes several sets of surface parameters depending on soil, vegetation, or both: Depending on soil only, are … depending on vegetation only, are … Finally, albedo and emissivity are parameters depending on both soil and vegetation properties. A set of these parameters has to be defined for each new ecosystem. So, how will it be done?

Desaggregation ‘tools’ Each ecosystem is a potential fraction of 12 vegetation types Use of climate zoning LAI (vegetation) To reach this objective, we will follow aggregation rules as in ECOCLIMAP-I. A priori, desaggregation parameters are LAI for vegetation covers and ALBEDO for bare soil. ALBEDO (bare soil)

ECOCLIMAP-I MODIS CYCLOPES LAImin and LAImax fixed for each ecosystem LAI inter-comparison ECOCLIMAP-I MODIS CYCLOPES Evergreen needle-leaf forest (Finland) Evergreen needle-leaf forest (France) This is a 2 years comparison of LAI with other satellite products for 2 forests, representative of high and temperate latitudes. in black, LAI resulting from the NDVI data in ECOCLIMAP-I, in green, LAI from CYCLOPES derived from SPOT/VEGETATION, In red, MODIS LAI. CYCLOPES LAI is too low while MODIS LAI is too noisy. In such situations, ECOCLIMAP LAI appears the more reliable.

GLC-2000 (coordination: Joint Research Center) ~ 1 year (2000) of SPOT/VEGETATION data The first land cover maps used are the different tiles of GLC2000. The GLOBAL LAND COVER 2000 Project is coordinated and implemented by the Global Vegetation Monitoring Unit from the Joint Research Centre in collaboration with a network of partners around the world. GLC 2000 makes use of the VEGA 2000 dataset: a dataset of 14 months of pre-processed daily global data acquired by the VEGETATION instrument on board the SPOT 4 satellite. Here you can see the different tiles available for GLC2000 at the time of the realization of the initial map. We can notice that on Europe and Asia in particular many different tiles are available. A global map also exists. 23 classes : tree cover (10), shrub (5), crop (3), bare area, water body, snow/ice, artificial surfaces, irrigated agriculture

CORINE Land Cover - 2000 44 classes Resolution : 100m CORINE2000 proceeds from the European Environment Agency. Data are derived from visually interpreted satellite images from SPOT and LANDSAT. Here you can see the area covered by the project: some countries do not appear: Swissland, Serbia-Montenegro, Andorre, Norway.

Merged GLC2000+CORINE (as initial LC map) 76 classes some minor CORINE classes Here you can sea the final map obtained after these operations, on Europe. The process was applied on the whole world, we show here the map used for the rest of the study. (rajouter une legende avec unites de paysage dominantes)

Choice of the clusters’ number 1st classification: big numbers of clusters (from a splitting of 76 merged classes GLC2000 +CORINE) Analysis of mean profiles, standard deviation, geographic localisation for each cluster 2, 3 iterations Classification with reduced numbers of clusters As we don’t use any quality criterion to quantify the result of the classification, we decide to proceed by several iterations. First, we launch the program with bigs numbers of clusters for all classes. Then, we observe mean profiles and standard deviation profiles for all clusters, along with geographical localisations associated. We try to pick out the more divergent profiles, and to decide which ones could be grouped together. Next, we restart the classification with new numbers of clusters deduced, lower. We compare new results with the previous, and see if we obtain what we were waiting for. After repeating 2 ou 3 times this process, we finally obtain 201 classes on Europe. Examining the map we find clusters from different classes which can be put together, and we finally get 161 classes. + gathering of ‘parent’ clusters  305 classes over Europe  255 classes over Europe

After classification, the resultinf map comprises 161 classes (but it’s not finished yet, they will potentially be more).

Broadleaf forests 6 clusters GLC2000+CORINE ECOCLIMAP-II Example of spliting for the broadleaf forest class is shown here. A class in Spain clearly sorts out, in orange on the graph, Characterized by a small amplitude, a maximum in spring. It is typical of dry summer and cool winter. Blue profile corresponds to dense forests of France and Italy mainly. Amplitude is also small: high values span from spring to summer, Relative low values in winter may be explained by the permanence of litter under temperate climates. Moving north, NDVI profiles like red, green and purple show larger amplitudes due to sparse forest canopies and the occurrence of snow in winter. Finally, mountain clusters appears in red and yellow. -> 6 classes ECOCLIMAP-II

Crops 11 clusters GLC2000+CORINE ECOCLIMAP-II Example of 11 clusters is presented here for the class: « cultivated and managed areas », which is the largest class of crops in the initial map. ECOCLIMAP-II

To conclude, we can sum up first improvements brought by the second version of ECOCLIMAP: The resolution of satellite data is better, by the use of SPOT/VEGETATION data rather than NOAA/AVHRR. The clusters are more precisely discriminated by the use of the automatic classification The initial land cover maps are more recent too Finally, the interannual variability of some parameters, notably the central parameter LAI, will be introduced. The difficulties encountered comprise the determination of pertinent clusters, knowing that NDVI is a limited parameter to characterize surface coverage. It also deals with the attribution of surface parameters, in particular determination of parameters for the 12 elementary cover types, and the desagregation of the clusters LAI or ALBEDO profiles.

Cross-validation of ECO-II with HR imagery FORMOSAT

Besoins des utilisateurs ECOCLIMAP-SG Besoins des utilisateurs Global 300 m ? (GLOBCOVER, ESA-CCI LC)

ECOCLIMAP-SG Réunion interne CNRM du 18 novembre 2014 Résultats attendus : Occupation des terres plus réalistes (forte urbanisation en 20 ans) Meilleure résolution spatiale Amélioration du temps de calcul Scénario retenu : Utilisation d’ESA-CCI Land Cover (300 m) Abandon des « covers » au profit de cartes de paramètres Etablir une fonction de transfert permettant d’intégrer ESA-CCI LC Utilisation LAI/albédo PROBA-V (à 300 m) Utilisation de nouvelles profondeurs de sol Echéance : fin 201