Gordana Cindric Microsoft France gordanac@microsoft.com 3/26/2017 3:56 PM Lutter contre le spam Gordana Cindric Microsoft France gordanac@microsoft.com © 2003-2004 Microsoft Corporation. All rights reserved. This presentation is for informational purposes only. Microsoft makes no warranties, express or implied, in this summary.
Agenda Comprendre le spam Constat sur le spam Différentes méthodes de détection du spam Les outils actuels de Microsoft pour lutter contre le spam Scénarii proposés par Microsoft Conclusion
Inquiétudes liées au spam Osterman Research: Spam is the biggest problem in today’s security market Le développement des communications électroniques internes et externes à l'entreprise est indéniable. Véritable outil de productivité, la messagerie électronique est également une source d'inquiétude croissante pour les responsables informatiques.
Qu’est-ce que le spam ? Selon la CNIL, le spam correspond à un: « Envoi massif – et parfois répété - de courriers électroniques non sollicités, le plus souvent à caractère commercial, à des personnes avec lesquelles l’expéditeur n’a jamais eu de contact et dont il a capté l’adresse électronique dans les espaces publics de l’Internet: forums de discussion, listes de diffusion, annuaires, sites Web,etc... » Synonymes: spamming, pollupostage, courrier-rebut, pourriel ou polluriel
Exemple de spam
Pourquoi reçoit-on du spam ? Notre FAE a cédé tout ou partie de sa liste d’abonnés à un tiers, y compris nos adresses... Notre adresse a été générée au hasard Association de noms, prénoms et noms de domaine etc... Nous avons communiqué notre adresse à un site web Commande sur un site de commerce électronique... Publication de notre adresse sur Internet Adresse laissée sur un forum de discussion, publication sur site web personnel
Comment les Spammers s’y prennent-ils ? 3/26/2017 3:56 PM Comment les Spammers s’y prennent-ils ? Les attaques actuelles courantes des Spammers Attaques au moyen de dictionnaires Relais et proxies ouverts Réseau compromis Machines « zombie » (tendance en augmentation forte) Attaque par « réflexion » Utilisation « à l’inverse » des messages de non remise Attaques distribuées SoBig & MyDoom Attaque en masse traditionnelle Spamware © 2003-2004 Microsoft Corporation. All rights reserved. This presentation is for informational purposes only. Microsoft makes no warranties, express or implied, in this summary.
(200 millions d’adresses pour 500 $) Spamware: Exemple Listes d’adresses (200 millions d’adresses pour 500 $) Adresses usurpées
Spamware : Exemple Manipulation des en-têtes (Adresses IP usurpées, empreintes) Remarquez les sélections « recommandées »
Vous pouvez disposer de tout cela pour seulement … Spamware : Exemple Liste de relais et de proxies ouverts (Liste de 40 000 relais ou proxies ouverts) Vous pouvez disposer de tout cela pour seulement … 29,95 $ Ceci n’est qu’un exemple parmi des centaines de programmes du même genre disponibles aujourd’hui !
Raisons du succès du spam Sources peu onéreuses Le coût de fichiers d'adresses ou de logiciels collecteurs d'e-mails est dérisoire. L'envoi de courriers électroniques ne coûte pas grand chose non plus (il suffit d'avoir une connexion Internet) Les retours sont nombreux : même avec un taux de clic faible, un envoi massif à plusieurs millions d'adresses génère quelques milliers de visites ! 33% des internautes ont déjà cliqué sur le lien proposé par un spam 7% des internautes ont commandé un bien ou service suite à la réception d’un spam => Le spammer affiche des revenus exceptionnels avec très peu d’investissement
Raisons du succès du spam 3/26/2017 3:56 PM Raisons du succès du spam Compagne traditionnelle Campagne Spam Coût par unité 1,37 € Coût par unité 0,001 e Mail de 10 000 unités Email de 1000000 unités Coût total 13700 € Coût total 1000 € Taux de réussite 2 % Taux de réussite 0,02 % 200 succès pour 68,50 € l’unité 200 succès pour 5 € l’unité Le Spam existe tout simplement parce qu’il rapporte ! Quand on compare l’utilisation du Spam à une campagne de marketing traditionnelle par mail, le Spam a des coûts très attractifs © 2003-2004 Microsoft Corporation. All rights reserved. This presentation is for informational purposes only. Microsoft makes no warranties, express or implied, in this summary.
Constat sur le spam
Constat sur le spam En 2005, le spam aurait représenté 57% du trafic mondial de messages électroniques, soit 14,5 mlliards de Spam envoyés chaque jour (Radicati Group). Ce pourcentage devrait atteindre 78% d’ici à 2009. Le spam a évolué d’un simple désagrément à une réelle menace pour l’entreprise => Impact financier estimé à 20,5 milliards de $/an globalement lié à: - la perte de productivité (10 min /utilisateurs et 43 min /admin) - l’utilisation excessive de la bande passante - moyens mis en œuvre pour renforcer les individus Problème de sécurité et confidentialité des données - Phishing = email qui invite l'utilisateur à cliquer sur un lien qui doit conduire vers un site de confiance (banque, vente en ligne, enchères ...). En réalité, ce lien oriente l’utilisateur vers des copies de ces sites de confiance et lui vole les informations souvent confidentielles qu’il saisit (n° de carte bleue..) - Spear Phishing = vise principalement à usurper l'identité (et plus particulièrement le compte email) d'une personne responsable et présente dans une entreprise
Un exemple de scam (1/3) Explication plausible, bien écrite Appel à une action - basé le domaine PayPal … et ils nous aident à éviter la fraude !!
Un exemple de scam (2/3) Champs Adresse – domaine PayPal Design du site – aucune difference Liens – sont fonctionnels (redirige vers le vrai site PayPal) Même un lien vers le centre de sécurité de PayPal !
Un exemple de scam (3/3) Cela vous mène à: Le lien n’est pas un lien texte, c’est en fait un ‘bouton’. Si vous tapez le lien manuellement, vous n’arrivez nulle part: https://www.paypal.com/cgi-bin/webscr?cmd=_login-run-verify_and_updat En examinant le code source (clic droit “view source”), vous remarquerez: href="https://www.paypal.com/cgi-bin/webscr?cmd=_login-run-verify_and_update"> <FORM action=https://61.33.168.151 method=get> Cela vous mène à: https://61.33.168.151/? En vous rendant à l’adresse ci-dessous, le navigateur montre: https://www.paypal.com/cgi-bin/webscr?cmd=_login-run-verify_and_update ... alors que le serveur qui affiche la page n’a aucun lien avec PayPal
Méthodes de lutte contre le spam 3/26/2017 3:56 PM Méthodes de lutte contre le spam © 2003-2004 Microsoft Corporation. All rights reserved. This presentation is for informational purposes only. Microsoft makes no warranties, express or implied, in this summary.
Méthodes de lutte contre le spam Définir des objectifs pour l’entreprise Eduquer les utilisateurs Ne pas utiliser l’adresse mail de l’entreprise à des fins privées (navigation web, forum...) Ne pas ouvrir un message ou cliquer sur un lien sans au préalable penser aux conséquences etc... Mettre en oeuvre une solution pour lutter contre le spam...
Technologies anti-spam Parmi les logiciels du marché, il existe plusieurs technologies pour lutter contre le spam: Listes RBL Filtrage de contenu Checksum Filtrage Bayesien Analyse heuristique Technologie RPD Ces technologies ont un certain nombre de limitations. La plupart des solutions anti-spam du marché repose sur une combinaison de ces technologies.
Realtime Black Lists (RBL) => Service externe maintenant des listes d’adresses IP à bloquer Exemple: SpamHaus, MAPS, SPEWS, DSPL Nombre de logiciels anti-spam intègrent des listes RBL, des listes noires et des filtres basés sur le DNS qui bloquent des listes de spammers connus, d’adresses ‘open relay’ et de relais masquant l’identité. Les listes RBL sont tributaires des temps de réponse (accès internet) Efficace pour bloquer le spam ancien, car la collecte des données prend du temps Mise à jour de ces listes très souvent sur la base du volontariat Manque de réactivité pour ‘blacklister’/’whitelister’ Augmentation potentielle des faux-positifs Les SPAMMERs défient les RBLs en: utilisant des machines détournées de manière à regénérer systématiquement de nouvelles adresses IP Attaquant les RBLs par des dénis de services 4 sites sont tombés en Août/Sept 2003 à cause du ver Fizzer
Filtrage de contenu Identifier des mots et expressions dans les messages de spam et définir des filtres pour bloquer le message fonction de ces mots et expressions. Utile en tant qu’outil de gestion de contenus Empêche de véhiculer des mots/expressions non désirés Inefficace et sans résultat probant dans la gestion du spam à l’échelle de l’entreprise Requiert une attention constante de l’administrateur (plusieurs heures par jour) Des leurres simples outrepassent la gestion de contenu Exemples: $ave, V*i*a*gr*a, Chëὰρ Il existe 105 variantes disponibles juste pour la lettre A! Résulte en de nombreux faux positifs Impossible à utiliser dans certains domaines d’activités Les spams avec peu ou pas de contenu ne pourront être bloqués
Limites du filtrage de contenu Ci-dessous plusieurs manières d’épeler le mot Viagra… V I @ G R A , V--1.@--G.R.a, \./iagra, Viiagra, V?agr?, V--i--a--g--r-a, V!agra, V1agra, VI.A.G.R.A, vi@gra, vIagr.a, via-gra, Via.gra, Vriagra, Viag*ra, vi-agra, Vi-ag.ra, v-iagra, Viagr-a, V^I^A^G^G^A, V'i'a'g'r'a', V*I*A,G,R.A, VI.A.G.R.A..., Viag\ra!, Vj@GRA, V-i:ag:ra, V'i'a'g'r'a, V/i;a:g:r:a, V i a g r @, V+i\a\g\r\a, Viag[ra, V?agra, V;I;A*G-R-A, V-i-a-g-r-a, V*I*A*G*R*A , V-i-@-g-r-a, VI@AGRA, Vi@gr@, \/^i^ag-ra, VlAGRA, V\i\a.g.r.a, V1@GRA, v_r_i_a_g_r_a, V\i\a:g:r:a, V^i^a^g^r^a, V-i-@-g-r-@, Viag(ra etc……
Limites du filtrage de contenu Des messages entiers peuvent être rédigés sans utiliser une orthographe/syntaxe correcte et restés tout à fait lisible. “Aoccdrnig to a rscheearch at an Elingsh uinervtisy, it deosn't mttaer in what oredr the ltteers in a wrod are, the olny iprmoetnt tihng is taht the frist and the lsat ltteer is at the rghit pclae. The rset can be a toatl mses and you can sitll raed it wouthit porbelm. Tihs is bcuseae we do not raed ervey lteter by it slef but the wrod as a wlohe.”
Filtrage bayesien => Système d’apprentissage qui utilise une analyse statistique du vocabulaire Listes de mots “bon,” “mauvais” et “neutre” Se repose sur les théories du Réverend Thomas Bayes (c. 1702-1761) En spécifiant au moteur ce que vous considérez ou non comme spam, le moteur compile des listes de mots (ou dictionnaires) représentatifs de chacune des catégories Mots dans les spams Une fois les dictionnaires compilés, le théorème de probabilité de Bayes est utilisé pour noter chaque message en tant que spam ou mail légitime. Mots ambigus Mots dans les messages légitimes Viagra Sex Buy Purchase Agree Unsubscribe Free Mortgage Nude Universal Bayesean PERT Information Smart Budget John Brady Interest Tonight The Best Wife
Limites du filtrage bayesien Nécessite du temps et une participation active de l’utilisateur pour devenir efficace Peut s’avérer efficace pour certains utilisateurs, beaucoup moins efficace au sein d’une entreprise Le choix d’un utilisateur peut écraser celui d’un autre Visé par les spammers Du simple texte, parfois invisible pour l’utilisateur, minimise la catégorisation du message en spam en augmentant le nombre de “bons” mots
Limites du filtrage bayesien Echantillon d’une chaîne de mots modifiant la classification du mail
Limites du filtrage bayesien Le filtrage Bayesien rencontre des difficultés pour bloquer les scams, car ils sont écrits dans un style tout à fait conventionnel. Peut générer des faux-positifs
Checksum => Création d’une “empreinte” de messages de spams connus Chaque message transmis est accompagné par une valeur numérique basée sur le nombre d’octets du message. La valeur numérique est alors comparée aux “empreintes” de spams connus Mises à jour de la base contenant les ”empreintes” Une “empreinte” ne peut être générée qu’après réception d’un spam N’intercepte pas les spams lorsque des caractères aléatoires sont ajoutés Ne fonctionne qu’avec une comparaison exacte des “empreintes” Presque pas de faux positifs mais taux de détection très faible
Limites du checksum Falsification du calcul de l’empreinte numérique
Analyse heuristique => Une méthode de calcul qui concocte des règles fonction de la langue et des techniques utilisés par le spammer. Pour chaque message, une note est définie. Les règles peuvent être simples: utilisation du mot “FREE” dans la ligne d’objet ou encore le champ A: est vide Les règles peuvent être complexes: Inversion les lettres en + ou – 13 par rapport à leur ordre dans l’alphabet Exemple:“apple pie” devient “nccyr cvr” Les règles peuvent être externalisées: vérifier plusieurs RBLs
Limites de l’analyse heuristique Le seuil de classification de spam doit être constamment ajusté. Utilisés dans de multiples produits Bien connue des spammers Les sites de spammers testent le spam vs. des moteurs heuristiques Impact important sur les performances Toute détection est un nouvel évènement qui ne tire aucun bénéfice des détections antérieures Dépendant de la langue du spam et problèmes avec spam non-anglais Pourcentage très élevé de faux positifs
RPD™ (Recurrent Pattern Detection) Technologie RPD Le spam est envoyé en masse – il y a un composant récurrent à chaque attaque. Détecte le composant récurrent de chaque attaque Identifie de manière unique l’ADN de chaque attaque Compare les messages entrants avec l’ADN en temps réel Analyse du trafic Internet Base des signatures de spam Client: Entreprise ISP... Classification ADN Requête RPD™ (Recurrent Pattern Detection)
Technologie RPD 175.237.138.240 eTn,D @#J!7 t2CO! L8k^n From: PayPal [mailto:skyhook-elglweebpxhp@planet-mail.com] Sent: Tuesday, June 15, 2004 12:16 AM To: Ex-CTCH; media; Ex-CTCH Subject: imagine being young again ferroelectric You've heard about these pills on TV, in the news, and online and have probably asked yourself, "Do they really work?" The answer is YES! IGF2 is a powerful erection enhancing product that will create erections so strong and full that over time your penis will actually grow as a direct result! If you would like a more satisfying sex life then IGF2 is for you! Check It Out Now! 175.237.138.240 eTn,D Hash @#J!7 t2CO! Hash L8k^n
Technologie RPD Le spam est détecté suivant des caractéristiques identiques ou approximatives des messages de spam Chaque message de spam est constitué de similitarités. Vérification de l’émetteur, ligne d’objet et le corps du message SPAM! SPAM! Système de classification, analyse statistique Message valide Signatures de messages
Exemple de spam défiant plusieurs technologies à la fois Mauvaise orthographe Image seule Le lien devient inexistant 4 jours après réception du spam Le lien“Unsubscribe” est faux Texte HTML Blanc-sur- Blanc Dictionnaire Anti-Bayesien
Solution: Combiner les technologies ? Les éditeurs qui proposent des solutions de lutte contre le spam combinent plusieurs technologies entre elles. Mais attention: Combiner les technologies ne permet pas de vous prémunir d’une erreur de traîtement par une des technologies. Le taux de faux-positifs n’est pas forcément inférieur !
Défis de la lutte contre le spam Combattre les spammers, et non pas le spam. Les spammers s’adaptent aux nouveautés et les technologies anti-spam deviennent rapidement obsolètes. Le besoin est bel et bien d’anticiper les moyens de contournement utilisés par les spammers. Solution temps réel à installer le plus en amont possible de l’infrastructure pour éviter les “fenêtres de vulnérabilités“ Flexibilité permettant de donner le contrôle de tout ou partie du spam aux utilisateurs ils savent distinguer, pour eux-mêmes, ce qui est spam de ce qui ne l’est pas Réduit les faux-positifs et les plaintes de non-remise de messages Confidentialité et sécurité Pas ou peu d’administration pour les équipes Indépendant du contenu (langue, toute méthode d’encodage, format de fichiers) Bon taux de détection Limiter au maximum les faux-positifs
Outils de Microsoft pour la lutte contre le spam
Outils de lutte contre le spam 3/26/2017 3:56 PM Outils de lutte contre le spam Fonctions anti-spam liées à Exchange 2003: - fonctions anti-spam natives à Exchange 2003 - Microsoft Exchange Intelligent Message Filter - Apport du Service Pack 2 d’Exchange dans la lutte contre le spam - Apport d’E12 Outils tiers: Microsoft Advanced Spam Manager © 2003-2004 Microsoft Corporation. All rights reserved. This presentation is for informational purposes only. Microsoft makes no warranties, express or implied, in this summary.
Fonctions anti-spam natives à Exchange Server 2003 3/26/2017 3:56 PM Filtrage d’expéditeurs : Filtrage de messages basé sur l’expéditeur ou le domaine SMTP Filtrage de messages SANS expéditeur Filtrage de destinataires : Filtrage de messages adressés à un destinataire particulier Coupure de la connexion après remise de 20 messages non résolus Utilisation de certaines DL restreintes aux utilisateurs authentifiés Anti-spoofing: Filtrage d’expéditeurs Pas de résolution de l’expéditeur pour les connexions non authentifiées. Traçage de la méthode de remise : anonyme ou authentifié Outlook Web Access 2003 & Outlook 2003 Blocage des pièces attachées Liste personnelle d’expéditeurs non désirables © 2003-2004 Microsoft Corporation. All rights reserved. This presentation is for informational purposes only. Microsoft makes no warranties, express or implied, in this summary.
Microsoft Exchange Intelligent Message Filter (IMF) Filtre Anti-Spam dédié à Exchange 2003 Technologie « SmartScreen » de MS Research Déjà utilisé dans Outlook 2003, MSN 8, Hotmail Basée sur l’analyse de millions de messages 200 000 utilisateurs Hotmail Permet de définir un niveau de « Spam Confidence Level » Deux niveaux de SCL configurables Passerelle Archiver, supprimer, rejeter Boîte aux lettres «Courrier indésirable» Gratuit et téléchargeable sur le Web Add-on complémentaire aux solutions d’éditeurs tiers
Exchange Server 2003 SP2 Amélioration de IMF (Intelligent Message Filter) 3/26/2017 3:56 PM IMF est maintenant fourni en natif dans le Service Pack 2 d’Exchange 2003 Mise à jour de la technologie SmartScreen Dernière mise à jour des filtres Amélioration de l’analyse les entêtes, le corps du message et d’autres attributs Mise à jour prévue 2 fois par mois Technologie Anti Phishing intégrée à Smartscreen Transparent pour les administrateurs et les utilisateurs finaux Phishing Confidence Level (PCL) avec une classification 1-8 (plus c’est élevé = plus c’est néfaste) Se repose sur une analyse heuristique et des listes blanches et noires Le PCL influe sur le SCL Création possible de ‘Custom Weight List’ Liste pouvant être créée pour bloquer des messages fonction de mots/expressions dans le sujet et/ou le corps du message Saisie manuelle des données Identification et blocage de nouveaux type de SPAM © 2003-2004 Microsoft Corporation. All rights reserved. This presentation is for informational purposes only. Microsoft makes no warranties, express or implied, in this summary.
Exchange Server 2003 SP2 Support du Framework Sender ID (SIDF) 3/26/2017 3:56 PM Créé pour contrer l’usurpation de domaine (domain spoofing) SIDF a été revu et soumis à l’IETF (Internet Engineering Task Force) pour validation finale Combine le Sender Policy Framework (SPF) et Microsoft Caller ID for Email Sender ID permet aux administrateurs d’un domaine de mail de protéger l’identité du domaine de mail en spécifiant des enregistrements DNS. Ces enregistrements sont aussi appelés SPF (Sender Policy Framework) et listent les hôtes (adresses IP, noms etc…) autorisés à envoyer des mails de ce domaine de mail. Exemple: Les entrées SPF pour le domaine de messagerie @microsoft.com listent environ 20 hôtes autorisés. © 2003-2004 Microsoft Corporation. All rights reserved. This presentation is for informational purposes only. Microsoft makes no warranties, express or implied, in this summary.
SenderID Framework Le message transite par n serveur(s) en route vers son destinataire Vérification de l’enregistrement SPF de l’émetteur dans le DNS Détermine “PRA” ou vérifie le “Mail From” Comparaison avec les adresses IP légitimes dans les enregistrements SPF Correspondance score neutre ou positif Pas de correspondance score neutre ou negatif Réputation ajoutée au score Inventaire effectué des noms de domaines émetteurs Publication de l’enregistrement SPF dans le DNS L’uitlisateur envoie un message
Pourquoi l’authentification? Améliorer fiabilité et confiance en l’utilisation de messages électroniques. Détecte l’usurpation d’adresses, procédé recurrent dans 95% des messages de type phishing. Protège la crédibilité et la réputation des entreprises et des noms de domaine Adoptée et signée par les leaders de l’industrie et diverses organisations AOL, Cisco, IronPort, Microsoft, Sendmail Symantec American Association of Adv Agencies, US Chamber of Commerce, Interactive Advertising Bureau, APWG, MAAWG, The-DMA, ESPC. TRUSTe
Adoption croissante de SIDF Croissance rapide dans son adoption par les F100 - 57% depuis juillet dernier 87% de croissance dans les domaines .com / .net depuis Mars Permet une meilleure pondération du résultat Liée à la réputation Hotmail: Pourcentage croissant de messages conformes
Exchange 2003 et E12 Exchange 2003 Exchange 12 Service Pack 2 3/26/2017 3:56 PM Exchange 2003 et E12 Exchange 2003 Exchange 12 Service Pack 2 Edge Server Role IMF run on Mailbox server IMF and Message Hygiene services run on network edge 3rd party DNS block-list support Automatic subscription to IP Reputation Service (IRS) DNS block-list (can now filter at the connection level inside the firewall) Bi-weekly IMF filter updates through MU. Customers manually check for updates, then download & install Frequent IMF and IRS filter updates with Anti-phishing data and Sender ID reputation. Anti-phishing PCL added to overall SCL Smart-screen improvements (AV/AS Stamp, New SCL Mgmt, more phishing data, Sender ID reputation) Sender-ID support Sender-ID reputation Computational Puzzle Verification Spam reports and diagnostics using EXBPA Per-user/group Spam preferences Outlook Safe / Block List Aggregation Server Quarantine © 2003-2004 Microsoft Corporation. All rights reserved. This presentation is for informational purposes only. Microsoft makes no warranties, express or implied, in this summary.
Outlook Junk Mail Filter
Solution Microsoft: Advanced Spam Manager (ASM) Combinaison de 3 technologies distinctes: Intégration d’un moteur anti-spam Intégration de Realtime Black List (RBL) Filtrage (pièces jointes, ligne d’objet…)
Solution Microsoft: Advanced Spam Manager (ASM) Intégration d’un moteur anti-spam : Moteur SpamCure de Mail-Filters Le Spam est collecté de différentes manières Moteur STAAR (Spammer Tricks Analysis And Response engine) Recherche les moyens de contournement utilisés par les spammers Informations falsifiées dans l’entête Mauvaise orthographe et autres caractéristiques spécifiques au spam Des signatures (‘Bullets’) sont créées Les éditeurs génèrent des signatures ciblées et de petites tailles (‘Bullets’) Basées sur les caractéristiques des messages Les signatures sont prévisibles – détectent la plupart des courriers non-sollicités du même spammer La base de signatures (‘bullets’) est continuellement mise à jour de manière à préserver efficacité et précision.
ASM Junk Folder ou Outlook 2003 Junk Folder Architecture ASM Mail Internet Spam tagging ASM Server Windows 2000/03 SMTP ou Exchange 5.5/2000/2003 Spam! Autre serveur de mail Filtres disponibles: Filtre anti-spam Filtrage pièce jointe Filtrage corps du message Filtrage ligne d’objet Filtrage émetteur/nom de domaine Liste blanche émetteur/nom de domaine RBLs Quarantaine de site Exchange Boite de réception Client Outlook ASM Junk Folder ou Outlook 2003 Junk Folder
ASM & IMF (sur le même serveur) Possibilité d’activer les SCL dans Antigen for Exchange Utilisation du dossier ‘Courrier Indésirable’ d’Outlook 2003 Comment fonctionne la combinaison ASM / IMF ? ASM positionne le SCL à 9 pour tout ce qui est considéré comme spam et à 0 pour tout le reste. Sur un même serveur, IMF analyse avant ASM Seul un SCL peut être appliqué Une note élevée ‘écrase’ toute note inférieure Le SCL avec le plus de confiance l’emporte Exemple: si IMF définit un SCL de 6 et que SpamCure détermine que le message est spam, le SCL final sera de 9 If IMF détermine qu’un message est spam, mais pas SpamCure, alors le SCL donné par IMF ne change pas.
Scénarii proposés par Microsoft
Windows Live Mail (Hotmail) 3/26/2017 3:56 PM Windows Live Mail (Hotmail) Windows Live Mail (Hotmail) Connection filtering Real Time Block List – MSBL / BM Rule Based Block Lists, Global accept / deny and exception lists SMTP Filtering Layer Sender and Recipient Filtering Sender ID x Domain Reputation Smartscreen + Brightmail Content Filter Anti-Spam SCL , Anti-Phishing PCL Junk Mail Folder (JMF) rules Signatures Connection Filtering SMTP Filtering Smartscreen + Brightmail Inbox Junk E-mail Incoming Internet E - mail 4 milliards de messages par jour- Volume de messages entrants bloqués: 3.6 milliards 90% des messages sont classifiés comme étant spam La solution ‘Message Hygiene’ bloque plus de 95% de tout le spam © 2003-2004 Microsoft Corporation. All rights reserved. This presentation is for informational purposes only. Microsoft makes no warranties, express or implied, in this summary.
Windows Live Mail (Kahuna)
‘Messaging Hygiene’ pour l’entreprise 3/26/2017 3:56 PM ‘Messaging Hygiene’ pour l’entreprise Connection filtering Real Time Block Lists – Microsoft IRS or 3rd Party RBL Rule Based Block Lists, Global accept / deny and exception lists SMTP Filtering Layer Sender and Recipient Filtering Sender ID Exchange Smart Screen Filter (IMF) Outlook Safe List Aggregation Anti-Spam SCL , Anti-Phishing PCL International Domain Support Computational Puzzle (Outlook Postmark) Validation Quarantine and Spam Reporting Outlook Smart Screen Filter (JMF) Safe + Blocked Sender & Recipients Phishing warning and block support Outlook Postmark Generation (Computational Puzzle) Connection Filtering SMTP Filtering & Sender ID Exchange Filtering Outlook Mailbox Inbox Junk E-mail Incoming Internet E - mail © 2003-2004 Microsoft Corporation. All rights reserved. This presentation is for informational purposes only. Microsoft makes no warranties, express or implied, in this summary.
Conclusion Les techniques de spam évoluent de manière constante. La motivation des créateurs de spam est grande. Par conséquent, la lutte n’est pas finie.... Les seules alternatives : Suivre les recommandations simples / faire preuve de bon sens Mettre en place une solution anti-spam pour minimiser l’impact du spam dans l’entreprise et surtout, la mettre à jour. Un autre aspect à prendre en compte : l’aspect légal !
Questions / Réponses
Merci de votre attention 3/26/2017 3:56 PM Merci de votre attention © 2003-2004 Microsoft Corporation. All rights reserved. This presentation is for informational purposes only. Microsoft makes no warranties, express or implied, in this summary.