Calcul de la composition fréquentielle du signal audio

Slides:



Advertisements
Présentations similaires
TRANSFORMEE DE FOURIER DISCRETE
Advertisements

Analyse temps-fréquence
PRINCIPE SIMPLIFIE DE LA COMPRESSION MP3
1 Jean-Paul Stromboni, mars 2005, Révision des cinq premières séances S.S.I. Jean-Paul Stromboni, mars 2005, ESSI1 Elève : ______________________ groupe.
S.S.I., ESSI1, lundi 9 mai 2005 Page 1 Comment compresser avec le spectre Séance 10, 1 heure Version : lundi 9 mai 2005 Auteur : Jean-Paul Stromboni Contenu.
S.S.I., ESSI1, samedi 10 avril 2004 Page 1 Comment tailler les filtres sur mesure Séance 8, nouvelle application des filtres, 1 heure Version : samedi.
Comment créer des filtres d’ordre 1 et 2
Comment on filtre un signal audio
Comment calculer le spectre d’un signal audio
Cours 5 – Comment bien échantillonner le signal audio
Comment décimer les sons numériques
4. La transformée en z Un formalisme adapté au filtrage et à l’analyse en fréquence des signaux échantillonnés et à l’automatique numérique x(t) signal.
1 Jean-Paul Stromboni, octobre 2007, SI3 Réviser le devoir surveillé n°1 du cours S.S.I.I. Jean-Paul Stromboni, octobre 2007, SI3 Elève : ______________________.
Filtres (n entier, Te=1s)
1 Jean-Paul Stromboni, mars 2005, Révision des cinq premières séances S.S.I. Jean-Paul Stromboni, mars 2005, ESSI1 Elève : ______________________ groupe.
Mesures dans le domaine fréquentiel
En quoi consiste la modulation d’amplitude ?
INTRODUCTION 1. Une représentation du signal où le bruit est isolé
Séries de Fourier Tout signal périodique (T) de puissance finie peut être décomposé en une somme de sinus et de cosinus. An=0 1(4/) 1+ 3 (4/3)
Comment créer des filtres « simples »
Comment compresser avec le CODEC mlaw
Comment bien échantillonner
Cours S.S.I., SI1, avril 2007 – Comment utiliser les outils déjà présentés. Page 1 Comment utiliser les outils déjà présentés dans le cours S.S.I. et pourquoi.
Extraits choisis du cours S.S.I.I.
AutoBilan MATLAB – SSII – SI3 – sept 2009 Page 1 Quel est leffet de linstruction ? Répondez ci-dessous Ok ? D=1; fe=1000 num2str(fe) num2str(d) ['la valeur.
Sous-échantillonner le signal audio pour compresser
1 PolytechNice-Sophia, Département S.I., S.I.3, octobre 2012, Jean-Paul Stromboni Séance 7 : Retour sur les cinq premiers chapitres du cours S.S.I.I.
Sauver un signal audio numérique dans un fichier wave
Extraits choisis du cours S.S.I.I.
1. Introduction 1.1. Modélisation des signaux
5. Signaux en bande passante
S.S.I.I., , n°7 : Construire et utiliser un banc de filtres Page 1 Construire et utiliser un banc de filtres pour analyser le spectre dun signal.
Cours S.S.I.I., , n°8, Créer des filtres pour compresser Cours S.S.I.I., , n°8, : Créer des filtres pour compresser Page 1 Mise en œuvre.
5. Echantillonnage Introduction
SSII : séance finale , lundi 9/01/2012 Page 1 Voici quelques questions pour assimiler la seconde partie du cours S.S.I.I., spectre, filtrage, banc.
S.S.I.I., , cours n°8 : Compresser avec un banc de filtres Page 1 Compresser avec un banc de filtres Le contenu de ce cours : T.D. n° 8 : simulation.
S.S.I.I., , n°6, Créer des filtres sur mesure pour compresser S.S.I.I., , n°6, : Créer des filtres sur mesure pour compresser 1 Créer un.
1 par Jean-Paul Stromboni, octobre 2008 Un autobilan pour réviser le devoir surveillé n°1 du cours S.S.I.I., par Jean-Paul Stromboni, octobre 2008 Elève.
Un principe de compression d’image
Filtrer le signal audio numérique (n entier, Te=1s)
1 Jean-Paul Stromboni, octobre 2007, SI3 Réviser le devoir surveillé n°1 du cours S.S.I.I. Jean-Paul Stromboni, octobre 2007, SI3 Elève : ______________________.
Filtrer le signal audio numérique
Un moyen de compresser le signal audio présenté à travers un exemple
Miniprojet S.S.I.I., , S.I.3 Analyse du signal NOTEguitare.wav N = fe=44100 Hz le signal audio à analyser :
Miniprojet S.S.I.I. en , S.I.3 Analyse du signal Noteguitare.wav N = fe=44100 Hz le signal audio à analyser :
S.S.I., ESSI1, le 8 février 2004 Page 1 Numériser le signal audio Séance 2, cours, 1 heure auteur : Jean-Paul Stromboni Idées clefs de la séance De nombreuses.
1 Introduction au module S.S.I. Signaux et Systèmes pour lInformatique le thème et les motivations du module S.S.I. les connaissances et le savoir faire.
Modulation analogique
Traitement Numérique du Signal
SCIENCES PHYSIQUES ET CHIMIQUES FONDAMENTALES ET APPLIQUEES
Utiliser le spectre et la transformée de Fourier
Introduction.
DU TRAITEMENT DU SIGNAL
Cours S.S.I.I., , n°7, Créer des filtres pour compresser Cours S.S.I.I., , n°7, : Créer des filtres pour compresser Page 1 Retour sur le.
SoundEngine Un serveur d ’effets sonore en temps réel Juillerat Nicolas.
Extraits choisis du cours S.S.I.I.
DU TRAITEMENT DU SIGNAL
TNS et Analyse Spectrale
Calcul numérique de la transformée de Fourier Applications:
Retour sur les filtres et bancs de filtres Jean-Paul Stromboni, décembre 2007.
Signal Son et Image pour l’Informaticien (S.S.I.I.) Page 1 Extraits choisis du cours S.S.I.I. On introduit ici des notions de base du traitement numérique.
Calcul de la composition fréquentielle du signal audio
1 23 mars 2004, Jean-Paul Stromboni Signaux et Systèmes pour l’Informaticien Bilan essais erreurs des six premières séances Module SSI d’ESSI 1– 23 mars.
Introduction du cours à partir d’extraits
Acoustique musicale.
SSII, séance n°13, bilan du cours 15 décembre 2015 Dernière séance 2015 Résumé des chapitres et notions abordées en 2015.
Echantillonnage sinusoïde 3.16 [mV], 64 [MHz] 1 Zoom : Échantillonnée à fe = 192 [MHz], N = 255 échantillons.
Introduction du cours à partir d’extraits
Sous-échantillonner le signal audio pour compresser
Exploiter la fonction fft(.) de Scilab
Transcription de la présentation:

Calcul de la composition fréquentielle du signal audio Jean-Paul Stromboni, pour les élèves SI3, nécessite un vidéo projecteur, durée 50mn , octobre 2012 Voici ce que vous devez savoir faire après cette séance : Définir le spectre d’un signal sinusoïdal Définir la Transformée de Fourier Discrète (TFD) de taille N Trouver la TFD des signaux constante et sinusoïde. Mesurer l’effet de la taille du signal de de la fenêtre d’apodisation Utiliser les fonctions fft(.) et spectrogram(.) de MATLAB Travaux Dirigés : calculer et exploiter TFD et FFT Savez vous répondre aux questions suivantes ? Quelle est l’information donnée par le spectre d’un signal audio ? Quelle est la résolution fréquentielle d'une FFT de taille N= 32 si fe= 8kHz ? Pourquoi diviser le spectre d'amplitude par la taille N de la fenêtre temporelle ? Quelle est la période du spectre d'un signal audio numérique échantillonné à 22050Hz ? Si on calcule M = 2048 valeurs de la TFD, préciser les fréquences fk si fe=8000Hz : Quelle est la durée d'une fenêtre de 1024 échantillons, à fe = 44100Hz Donner la composition fréquentielle de x(t) Pourquoi limiter le calcul du spectre à une fenêtre de taille N échantillons ?

Composition fréquentielle ou spectre Depuis Joseph Fourier (1768-1830), physicien et mathématicien français, on sait décomposer une fonction du temps s(t) quelconque en une somme de fonctions sinusoïdales, ou spectre : Soit s(t), fonction du temps définie quelque soit t, S(f) ci-dessous détermine le spectre de s(t) : Inversement, connaissant le spectre S(f) de s(t), on détermine s(t) par : S(f) est une quantité complexe : Si la composante fréquentielle de s(t) à la fréquence f s’exprime par : On aura : et Dans la suite de ce cours, on se limite au module de S(f), c’est-à-dire au spectre d’amplitude :

Matlab, Scilab, Goldwave, utilisent la Transformée de Fourier Discrète (TFD) pour calculer le spectre Définition de la TFD : pour un signal x(t) échantillonné à la fréquence fe, MATLAB calcule le spectre en limitant le signal à une fenêtre temporelle de N échantillons : X(f) est le spectre de x(n/fe), X(f) est périodique, la valeur de la période est fe |X(f)| est symétrique par rapport à la fréquence fe/2 la fenêtre de calcul dure NTe (contient N échantillons) Calcul de la TFD : en pratique, on calcule seulement N valeurs de la TFD, les X(fk) pour les seules fréquences fk : est la résolution fréquentielle Note : pour mieux reconstruire la fonction X(f), on peut calculer et afficher M > N valeurs au lieu de N Algorithme de transformée de Fourier rapide (en anglais Fast Fourier Transform) Si N est une puissance de 2, on accélère le calcul du fait des périodicités et symétries des exponentielles complexes Matlab, Scilab, Goldwave, … utilisent l’algorithme de FFT pour calculer la transformée de Fourier discrète

Calcul de la T.F.D. du signal constant de taille N TFD de la fonction constante, du signal de fréquence nulle, ou de la fenêtre rectangulaire de durée NTe Que valent : R(0) R(fe) R(-fe) R(fe/N) La périodicité du dénominateur La périodicité du numérateur

Analyse d’un exemple : x = 0.75, N = 16, fe = 8kHz Tracé sur une période [ 0, fe [ Relation entre [0,fe/2] et [fe/2, fe] ? Tracé de spectre/N entre 0 et fe Tracé de spectre/N : reporter les N valeurs calculées R(kfe/N), k= 0 … N-1

TFD du signal sinusoïdal (sans calcul) Analyser le spectre d’amplitude suivant (où |S(f)| est déjà divisé par N) Tracé de |S(f)|/N sur une période Lire fe R(f0) R(fe-f0) R(fe/N) a et f0 Placer les N= 16 valeurs calculées par la TFD f0 varie de 100 Hz, que prévoir ?

Influence du nombre N d’échantillons (fenêtre rectangulaire, ou pas de fenêtre) s= 0.75*cos(2*pi*440*t), D=0.04s, fe=8kHz f0= a0= fe = N = NTe = Df = spectre/N = f0= a0= fe = N = NTe = Df = spectre/N =

Influence de la fenêtre de Hamming Comparaison des spectres d'amplitude de ces deux fenêtres : fe= N= durée= fe/N= fmin= fmax= Hamming amplMax= nbLobes= largeur= Rectangle largeur:

Influence de la taille N du signal dans le cas de la fenêtre de Hamming s= 0.75*cos(2*pi*440*t), D=0.04s, fe=8kHz f0= a0= fe = N = NTe = Df = spectre/N = Dessiner la forme de la fenêtre de Hamming Comparer au spectre obtenu avec la fenêtre rectangulaire

Erreur ou problème de synchronisation On illustre avec le signal s suivant composé d'une ou de deux fréquences f0 et f1 : s=a*cos(2*pi*f0*t)+a1*cos(2*pi*f1*t) erreur sur l'amplitude et sur la position de la raie si f1 n'est pas l'une des fréquences calculées : risque de confusion, si les deux composantes de fréquence sont trop proches

Spectre et spectrogramme (avec Goldwave) Spectrogramme de s(t), fe=8kHz, f=500Hz, fenêtre rectangulaire, 30fps spectre = composition fréquentielle Spectrogramme=spectre (temps)

Spectre et spectrogramme avec MATLAB fe=8000; N=4096; t=[0:16000]/fe; s=0.5*cos(2*pi*1000*t)+ 0.75*cos(4000*pi*t); f=[-N/2:N/2-1]*fe/N; spec= fftshift(fft(s(1:N))) plot(f,abs(spec)), grid, figure spectrogram(s,hamming(N),N/2,N,fe,'yaxis') colorbar Noter pour le spectrogramme : la fenêtre utilisée est une fenêtre de Hamming le code de couleurs donnant l’amplitude en dB est à droite

Exploitation du tracé du spectre d'amplitude sur les tracés suivants, retrouver : fe, N, a0 et f0, la durée de la fenêtre temporelle et l'axe de symétrie. Que vaut M ? Que vaut Df ? Quelle est la relation entre les tracés ?

Représentation 3D du spectrogramme pour le signal vocal, on sait que la durée de la fenêtre d’analyse ne doit pas dépasser 30ms (?) si fe=8 kHz, c’est une fenêtre de 240 échantillons. On calcule la TFD de la fenêtre, on déplace la fenêtre et on recommence On regroupe les résultats dans un spectrogramme, en 3D (cf. ci-dessous) ou en 2D (cf. Goldwave) Quelle est ici la résolution fréquentielle ? Comment obtenir une fenêtre de 20ms, sachant que fe=22050Hz ? Donner la résolution fréquentielle. Voici le spectrogramme de piano_c3.wav tracé par WaveLab : retrouver les informations de fréquence fondamentale, durée du signal, enveloppe …