Les identités remarquables ACTIVITES Les identités remarquables
Les identités remarquables Ex 31 p 38 Ex 32 p 38 Ex 33 p 38 Ex 34 p 38 Ex 35 p 38 Ex 36 p 38 Ex 37 p 38 Ex 45 p 39 Ex 46 p 39 Ex 47 p 39 Ex 48 p 39 Ex 50 p 39 Ex 51 p 39 Ex 52 p 39 Ex 53 p 39 Ex 54 p 39 Ex 55 p 39 Cliquez sur l’exercice choisi…
Ex 31 p 38 Développer A = (x + 5)² = x² + 10x + 25 B = (x – 5)² = Produit = Double produit = 5x x² + 10x + 25 10x B = (x – 5)² = Produit = Double produit = 5x x² – 10x + 25 10x C = (x + 5)(x – 5) = x² – 25 D = (2x – 7)² = Produit = Double produit = 14x 4x² – 28x + 49 28x
Ex 32 p 38 Développer A = (3 + 2x)² = 9 + 12x + 4x² = 4x² + 12x + 9 Produit = Double produit = 6x 9 + 12x + 4x² 12x = 4x² + 12x + 9 B = (11 – a)(11 + a) = 121 – a² Produit = Double produit = Produit = Double produit =
Ex 33 p 38 Développer B = (5 – 11x)² = 25 – 110x + 121x² Produit = Double produit = 55x 25 – 110x + 121x² 110x = 121x² – 110x + 25
Ex 33 p 38 (suite) C = (12 + 13x)² = 144 + 312x + 169x² Produit = Double produit = 156x 144 + 312x + 169x² 312x = 169x² + 312x + 144 D = (9x – 4)(4 + 9x) = (9x – 4)(9x + 4) 81x² – 16
Ex 34 p 38 Développer B = (– x + 1,2)² = (1,2 – x)² = 1,44 – 2,4x + x² Produit = Double produit = B = (– x + 1,2)² = (1,2 – x)² = Produit = Double produit = 1,2x 1,44 – 2,4x + x² 2,4x = x² – 2,4x + 1,44
Ex 34 p 38 (suite) C = (0,7 – x)(0,7 + x) = 0,49 – x² D = (11x – 12)² Produit = Double produit = 132x 121x² – 264x + 144 264x
Ex 35 p 38 Développer A = (0,8x – 0,7)² = 0,64x² – 1,12x + 0,49 Produit = Double produit = 0,56x 0,64x² – 1,12x + 0,49 1,12x B = (1,3 – 2x)² = Produit = Double produit = 2,6x 1,69 – 5,2x + 4x² 5,2x = 4x² – 5,2x + 1,69
Ex 35 p 38 (suite) D = (x² – 2)² = x4 – 4x² + 4 Produit = 1 Double produit = 1 2 D = (x² – 2)² = Produit = Double produit = 2x² x4 – 4x² + 4 4x²
Ex 36 p 38 a) Développer et réduire A = (2x + 1)² – (3x – 2)(3x + 2) Produit = Double produit = 2x 4x² + 4x + 1 – ( ) 9x² – 4 4x A = 4x² + 4x + 1 – 9x² + 4 A = – 5x² + 4x + 5 b) Développer B = (4x + 1)² = Produit = Double produit = 4x 16x² + 8x + 1 8x
Ex 36 p 38 (suite) c) Développer C = (3x – 5)² = 9x² – 30x + 25 Produit = Double produit = 15x 9x² – 30x + 25 30x
Ex 37 p 38 a) Développer et réduire D = (x – 5)(3x – 2) – (3x – 2)² Produit = Double produit = 6x D = (x – 5)(3x – 2) – (3x – 2)² 12x D = 3x² – 2x – 15x + 10 – ( ) 9x² – 12x + 4 D = 3x² – 2x – 15x + 10 – 9x² + 12x – 4 D = – 6x² – 5x + 6
Ex 37 p 38 (suite) b) Factoriser D = (x – 5)(3x – 2) – (3x – 2)² D = (x – 5)(3x – 2) – (3x – 2)(3x – 2) D = (3x – 2)[(x – 5) – (3x – 2)] D = (3x – 2)(x – 5 – 3x + 2) D = (3x – 2)(– 2x – 3) D = (3x – 2)(– 2x – 3)
Ex 37 p 38 (suite) c) Résoudre l’équation : (3x – 2)(– 2x – 3) = 0 (3x – 2)(– 2x – 3) = 0 si ou – 2x – 3 = 0 3x – 2 = 0 3x – 2 + 2 = 0 + 2 3x = 2 – 2x – 3 = 0 – 2x – 3 + 3 = 0 + 3 – 2x = 3 (3x – 2)(– 2x – 3) = 0 si ou Les solutions de cette équation sont donc : et
Ex 45 p 39 Compléter 4x² + ...... + ….. = (…. + 5)² 20x 25 2x 10 …. + 14x + …... = (x + ....)² x² 49 7 9x² …. – 12x + 4 = (…. – ….)² 3x 2
Ex 46 p 39 Compléter 64 + 48x + 9x² = (…. + ….)² 8 3x 49 x x 7 121 – 4x² = (…. + .…)(…. – ….) 11 2x 11 2x
Ex 47 p 39 Compléter (3x + …)² = ….. + …... + 25 5 9x² 30x 16
Ex 48 p 39 Compléter (2x – …)² = …... – 24x + …. 6 4x² 36
Ex 50 p 39 Écrire les expressions suivantes sous la forme d’un carré A = x² + 6x + 9 = (x + 3)² B = 25x² – 40x + 16 = (5x – 4)² C = 9 + 30x + 25x² = (3 + 5x)² D = 9 – 30x + 25x² = (3 – 5x)² E = 16x² + 8x + 1 = (4x + 1)² F = 9x² + 6x + 1 = (3x + 1)²
Ex 51 p 39 Factoriser les expressions suivantes A = x² + 2x + 1 = B = x² – 2x + 1 = (x – 1)² C = 4x² + 4x + 1 = (2x + 1)² D = 4 + x² + 4x = (x + 2)² E = – 4x + 4 + x² = (x – 2)² F = 1 + 4x² – 4x = (2x – 1)²
Ex 52 p 39 Factoriser les expressions suivantes A = 1 + 9x² + 6x = B = x² – 4 = (x + 2)(x – 2) C = – 6x + 9 + x² = (x – 3)² D = x² – 16 = (x + 4)(x – 4) E = 4x² + 12x + 9 = (2x + 3)² F = – 9 + x² = (x + 3)(x – 3)
Ex 53 p 39 Factoriser les expressions suivantes G = 9x² – 12x + 4 = H = 16x² – 25 = (4x + 5)(4x – 5) I = 9 + 4x² – 12x = (2x – 3)² J = – x² + 1 = (1 + x)(1 – x)
Ex 54 p 39 Factoriser les expressions suivantes A = 169x² – 4 = (13x + 2)(13x – 2) B = (2x – 1)² – (2 – 3x)² = [(2x – 1) + (2 – 3x)][(2x – 1) – (2 – 3x)] = (2x – 1 + 2 – 3x)(2x – 1 – 2 + 3x) = (– x + 1)(5x – 3) C = 4x² – (x – 3)² = [2x + (x – 3)][2x – (x – 3)] = (2x + x – 3)(2x – x + 3) = (3x – 3)(x + 3) = 3(x – 1)(x + 3) D = 9x² + 12x + 4 = (3x + 2)²
Ex 55 p 39 Factoriser les expressions suivantes A = 9x² – 25 = (3x + 5)(3x – 5) B = (x – 3)² – 9 = (x – 3)² – 3² = [(x – 3) + 3][(x – 3) – 3] = (x – 3 + 3)(x – 3 – 3) = x(x – 6) C = x² – 8x + 16 = (x – 4)² D = (5x + 8)² – 25 = (5x + 8)² – 5² = [(5x + 8) + 5][(5x + 8) – 5] = (5x + 8 + 5)(5x + 8 – 5) = (5x + 13)(5x + 3)