Evénements W,Z au LHC: Mesures et applications N.Besson, M.Boonekamp

Slides:



Advertisements
Présentations similaires
L’Etat Final Lepton(s) + 2 b
Advertisements

Non linéarités liées à la thermique
Caractériser les précipitations intenses du MRCC
La Cyclostationnarité Aspects théoriques et application au Diagnostic
Une approche informationnelle de la restauration d’images
RECONNAISSANCE DE FORMES
1 ATLAS France 2006 Comité Organisateur : Nathalie BESSON…..(Dapnia) Jean ERNWEIN………(Dapnia) Daniel FOURNIER………(LAL) Philippe GRENIER (LPCC) Marumi.
Quel détecteur de vertex pour le prochain collisionneur linéaire ?
Auguste BessonD0-France, Strasbourg, Nov SUSY: RpV Couplage. États finals en di-electrons Auguste BESSON (ISN-Grenoble) SUSY: cadre théorique.
1 ATLAS France 2006 Comité Organisateur : Nathalie BESSON…..(Dapnia) Jean ERNWEIN………(Dapnia) Daniel FOURNIER………(LAL) Philippe GRENIER (LPCC) Marumi.
1 ATLAS France 2006 Comité Organisateur : Nathalie BESSON…..(Dapnia) Jean ERNWEIN………(Dapnia) Daniel FOURNIER………(LAL) Philippe GRENIER (LPCC) Marumi.
Activités MS dans ATLAS. Projet principal cette année : CSC Exercice « complet » de la chaîne software et danalyse: –Generation, simulation, reconstruction,
Reconstruction des paires (tt) Anne-Isabelle ETIENVRE,
Analyses Test Beam Stand Alone Mesure de lÉnergie des Électrons Linéarité et Uniformité de Modules Barrel Nouveau résultat duniformité des Modules Barrel.
La calibration des jets b dans ATLAS V.Giangiobbe LPC Clermont-Ferrand Journées Physique ATLAS France à AutransSession Jet/missingET/tau29/03/2006.
Journées Physique Atlas France Mars 2006 Autrans Lalgorithme de clustering topologique Nicolas Kerschen DAPNIA Plan: Introduction Principe et propriétés.
Reconstruction combinée des muons dans ATLAS
Commissioning du calorimètre central à argon liquide d’ATLAS:
PAF - 28 mars 2006 Rosy Nicolaidou 1 Dapnia/SPP Etude du canal Higgs ZZ* 4 leptons (e ±,µ ± ) dans ATLAS Introduction Stratégie danalyse Quest ce qui a.
Chapitre 8: La gestion de l’offre
Tests des modules SSD Stéphane Plumeri Institut de Recherches Subatomiques (IReS), Strasbourg ALICE collaboration Journées ALICE France 23 – 24 Mai 2004.
1 Analyse de la variance multivariée Michel Tenenhaus.
IAS 36 «Dépréciation d'actifs»
Académie universitaire Wallonie—Bruxelles
Conclusions du groupe de travail “Origine de la masse et physique au
Journées de rencontre des thésards IReS
Cours de physique générale I Ph 11
Etude d'un canal de désintégration SUSY à CMS: Résultats intermédiaires Alexandre Mollet.
1 Recherche du boson de Higgs léger SUperSYmétrique dans le cadre de l'expérience CMS Alexandre Mollet.
Cours Corporate finance Eléments de théorie du portefeuille Le Medaf
1 I - Du Z aux ZII – Études Z avec ATLASIII – Recherche dans les données Julien MOREL 24 avril 2009 Recherche d'une nouvelle résonance de spin 1 dans le.
1.3 COORDONNÉES DES POINTS
SCIENCES DE L ’INGENIEUR
Test bilan de calcul mental N°1 :
Activitées du group CDF A.Clark, M.Campanelli, M.Donega, M.D'Onofrio, Y.Liu, S.Vallecorsa, X.Wu.
Journées de Rencontre Jeune Chercheurs
Identification du Z 0 et détermination de sa masse Désintégration du Z 0 Le détecteur ALEPH Identification des produits de désintégration du Z 0 (DALI)
2.4 Mouvements de charges dans un champ électrique uniforme
S.Porteboeuf T.Pierog K.Werner EPOS, du RHIC au LHC QGP-France septembre 2007 Etretat.
J.-C. Brient - journée DAPNIA/IN2P Le Higgs au Tevatron, LHC et ILC OUQUANDCOMMENT.
Présentation de la méthode des Eléments Finis
R. Torres Etude du top dans l'experience ATLAS 1.
1 Une méthode itérative pour l'unfolding des données expérimentales, stabilisée dynamiquement(*) Bogdan MALAESCU LAL LLR 28/09/2009 (*arxiv: )
Université de Sherbrooke
PP_LAL D0 France Mesure de la mass du W Paramètre fondamental du MS combiné avec la masse du top  contrainte sur la mass du Higgs Depuis sa.
JJC 2003Benjamin Portheault Qu’apprend-on de la Structure du Proton avec les données de H1 ? Benjamin Portheault, LAL Orsay HERA et le détecteur H1 La.
Stéphanie Beauceron Thèse soutenue le 28 Mai 2004 réalisée sous la direction de Gregorio Bernardi au sein du groupe DØ du LPNHE sur le sujet.
Approche des processus durs dans le générateur d'événements EPOS Sarah Porteboeuf Rencontre des Particules 2008 K.Werner.
1 Little Higgs - JJC 2003 Test du Modèle du Little Higgs dans ATLAS Matthieu LECHOWSKI Journées Jeunes Chercheurs 2003 Journées Jeunes Chercheurs 2003.
SFP – 10 juillet La Physique au Tevatron Sophie Trincaz-Duvoid  Le Tevatron et les détecteurs D0 et CDF  Thèmes de recherche au Tevatron  Physique.
HZbb avec l’EXPERIENCE D
Calorimètres électromagnétiques et hadroniques
Mesure de la section efficace top anti-top au Tevatron
L’implication du groupe de Métrologie des grandes dimensions dans l’alignement des accélérateurs et des détecteurs Brève description du CERN du LHC La.
La recherche de vertex dans CMS : le recuit déterministe Nicolas Estre – IPN Lyon – Journées Jeunes Chercheurs 2003.
Production des événements ttbar dans l’expérience D0 Stefania Bordoni (Master 1) et Chloé Gerin (Magister 1)
1/9 Stéphanie Beauceron 2004 – 2005 Post-doc sur CMS au DAPNIA/SPP sur le calorimètre électromagnétique – 2004Thèse soutenue le 28 Mai 2004 sous.
1 La sonde  -jet dans ALICE  Jets /  -jets : Comparaison RHIC - LHC. Observables.  Moyens : Détecteurs. Algorithmes.  Identification des particules.
Stéphanie Beauceron Thèse sera soutenue le 28 Mai 2004 sous la direction de Gregorio Bernardi dans DØ - LPNHE : Recherche du boson de Higgs dans.
Julien MOREL - GRD SUSY - Lyon 12/07/06 1 Recherche de Z’  e + e - avec ATLAS auprès du LHC Fabienne LEDROIT Julien MOREL LPSC - Grenoble.
JJC 2002 Stéphanie Beauceron LPNHE- Paris 1 L’expérience DØ I. Fermilab et le Tevatron II. Le détecteur 1- Les principaux sous détecteurs 2- La calibration.
F. Guérin –QGP France – Etretat Mesure de la production du Upsilon avec le spectromètre à muons d’ALICE OUTLINE  Introduction  Mesure du Upsilon.
1 Travaux pratiques des MasterClasses : « Analyse des événements du détecteur DELPHI au LEP» Sylvie Dagoret-Campagne
1 Bertrand Martin D ø France Grenoble 24/06/2008 Mesure de la section efficace σ(pp → tt →e + e - ) en p17 e+e+ e-e-
Journées Jeunes Chercheurs Extraction des sections efficaces de l’électro-production exclusive de pions neutres dans le Hall A du Jefferson laboratory.
Etude des désintégrations supprimées de couleur B°  D ( * ) °h° avec l’expérience BaBar Xavier Prudent Sous la direction de V. Tisserand, LAPP h  
Etude des algorithmes de reconstruction des jets dans le détecteur CMS Loïc Quertenmont V. Lemaître, G. Bruno, K. Piotrzkowski Université Catholique de.
Efficacité de reconstruction des électrons de bas pt Fany Dudziak Réunion de physique ATLAS LAL le 13 décembre 2007.
Mesure de mW : systématiques envisageables au LHC N. Besson
Transcription de la présentation:

Evénements W,Z au LHC: Mesures et applications N.Besson, M.Boonekamp W,Z : calibration du détecteur et calibration de physique. Les deux aspects se recouvrent : logique d’analyse non triviale Cette présentation : Prédictions et incertitudes (théorie et détecteur). Statistique attendue Sections efficaces & efficacité de reconstruction fonctions de structure (non discuté ici : cascades partoniques, ordres supérieurs..) tests de QCD Echelle d’énergie et résolution MW N. Besson & M. Boonekamp

sW, sZ : prédictions actuelles Sections efficaces W, Z (Mangano, Frixione, 2004) sW ~ 21 nb ; AccW ~ 48% (pT>20 GeV, he<2.5) sZ ~ 2.1 nb ; AccZ ~ 42% (pT>20 GeV, he<2.5  2) Incertitudes : total 4-5% Fonctions de structure : d(pdf)~4% (distributions) Echelles de renormalisation/factorisation : Q/2…2Q ~1% (normalisation) N. Besson & M. Boonekamp

Connaissance a priori du détecteur Exemple du calorimètre : Echelle d’énergie : dE ~ 1-2% (calibration électronique, pureté/température de l’argon, matière inactive…) Résolution : ds ~ 1% (uniformité des modules, matière inactive) Efficacité : assez forte dépendance en ET dans la région 20-40 GeV Précision attendue : prenons toujours ~107 événements Z  ee (~10 fb-1) Echelle d’énergie : (GZ  sM) / (N) ~ 1.5 MeV < dMZ (LEP) Résolution : (GZ  sM) / (2N) ~ 1 MeV < dGZ (LEP) Efficacité vs ET, h (e.g 10x10 bins) : 1/(N) ~ 0.3% limitant? (cf. plus loin) N. Besson & M. Boonekamp

Efficacité et sections efficaces L’efficacité de reconstruction des électrons dépend fortement de ET et affecte la forme des distributions, notamment pT(e)  Mesure simultanée de l’efficacité et de la section efficace différentielle Méthode Pièce manquante (normalisation) Résultats actuels et perspectives N. Besson & M. Boonekamp

Méthode (1) On considère le canal Zee Binning Acceptance du Z divisée en ny nPt bins en rapidité et Pt du Z Acceptance des électrons divisée en nEt  n bins en Et et  Dans la suite, “bin” = indice dans l’espace (yZ,PtZ) pour les Z, et dans l’espace (ET,) pour les leptons Dans chaque bin (yZ, PtZ) On mesure Nij = nb. de paires ee reconstruites avec un lepton dans le bin i, et un dans le bin j De la vérité on tire les Pij = probabilités qu’un Z se désintègre en ee avec les électrons dans les bins (i,j) On calcule les efficacités de reconstruction i et j en résolvant le système d’équations suivant Nij = i  j  Pij  L yZ,PtZ (ny nPt systèmes) On combine les systèmes: En imposant que les ei ne dépendent pas de (yZ,PtZ)  moyenne pondérée des ei Les L yZ,PtZ sont calculés à partir des ei moyennés N. Besson & M. Boonekamp

Méthode (2) Calcul On linéarise le système : ln( Nij ) - ln( Pij ) = ln( i ) + ln( j ) + ln( L yZ,PtZ ) mesuré connu à calculer Il y a par construction un facteur global a entre les  et le terme L yZ,PtZ ln( Nij ) - ln( Pij ) = ln( I /sqrt(α)) + ln( j /sqrt(α) ) + ln( L yZ,PtZ  α) Dans un premier temps on le choisit arbitrairement L yZ,PtZ = 1  il manque une mesure absolue de l’efficacité Exemple de système avec deux bins en (Et,) On utilise la méthode SVD (Singular Value Decomposition) pour résoudre les systèmes N. Besson & M. Boonekamp

Résultats : exemple avec ATLFAST (1) On utilise des événements Zee ATLFAST (10 millions) au niveau génération, auxquels on applique une fonction d’efficacité : e(ET) = 0.7-exp(-ET/8) (forme suggérée par la simulation complète, voir plus loin) On considère le cas suivant : nyZ = 5, nPtZ = 1, nEte = 10, ne = 1 Résultats après normalisation : efficacité (Rappel : forme déterminée précisément, facteur mis à la main) N. Besson & M. Boonekamp

Exemple (2) Résultats après normalisation : L yZ,PtZ Ne pas prendre en compte la dépendance de e en ET induit un biais de 5% sur ds/dyZ La méthode permet de connaître les formes des sections efficaces différentielles et des efficacités. C’est déjà suffisant pour évaluer l’erreur systématique correspondante sur MW. C’est aussi une contrainte sur les fonctions de structure. Bien-sûr, il manque une mesure absolue de e: cf. S.Jézéquel et al N. Besson & M. Boonekamp

Applications Première application : environnement QCD. Fonctions de structure Outil : CTEQ6 (CTEQ, 2002) 1 « best fit set» : résultat d’un fit global (cibles fixes, Hera, Tevatron) à 20 paramètres (décrivant le gluon, les quarks de valence et de la mer) 40 « uncertainty sets » : après diagonalisation de la matrice d’erreur, chaque valeur propre est décalée de +1s et -1s, donnant 2x20 « sets » en tout. L’incertitude totale sur une mesure P est définie par dP2 = Si(Pi-P0)2 (Pi == mesure de P obtenue en supposant le « set » i; i=0 == best fit) N. Besson & M. Boonekamp

Applications Première application : environnement QCD. Fonctions de structure Après reconstruction de ds/dy et ds/dpT, on peut comparer avec les prédictions d(dsZ/dy) ~ 4%  ~ 0.3% d(dsZ/dpT) ~ 2.5%  ~ 0.2% (avec ~10 fb-1) Résultats similaires pour sW max min max min yZ pTZ N. Besson & M. Boonekamp

Applications Deuxième application : sW vs. sZ. Sections efficaces fortement corrélées (sW,Z  qq, les quarks de la mer) Test simple de QCD : (chaque point représente un « uncertainty set ») sW Mesures compatibles? Mesure 1 Mesure 2 sz N. Besson & M. Boonekamp

Echelle d’énergie et résolution Motivations MH : on espère une précision théorique de l’ordre de dMH~1 GeV (relations entre les masses et couplages des bosons de Higgs dans le MSSM)  l’échelle doit être connue à 10-2-10-3 près MW : on espère atteindre dMW ~ dMZ (2-10 MeV)  l’échelle doit être connue à ~2.10-5 près Description : Méthode : exploitation du pic du Z. Echelle de masse et échelle d’énergie Résultats N. Besson & M. Boonekamp

Méthode Echelle de masse : exemple avec Z –> ee. Echelle et résolution sont corrélées : ajustement simultané nécessaire Références : un ensemble d’histogrammes de masse invariante obtenus à partir des électrons générés que l’on biaise d’un facteur a, et auxquels on impose une résolution en a*E. Chaque histogramme est donc caractérisé par un couple (a,a). Test de c2 entre la forme de la masse invariante des « données » et les références dans les « deux dimensions » N. Besson & M. Boonekamp

Résultat : exemple avec les données « de Rome » Echelle de masse : application à « Rome » Z  ee Fit Application  Résultat satisfaisant! N. Besson & M. Boonekamp

Echelle d’énergie et résolution vs. E Pour contrôler la linéarité, on répète l’analyse en fonction de l’énergie On divise les Z en lots (i,j) tels qu’un électron soit dans le bin Ei et un dans Ej. Pour chaque couple (i,j) on fait le même exercice que précédemment et on obtient des bij (facteurs d’échelle) et des aij (paramètres de résolution) Pour l’échelle d’énergie: Analyse en masse uniqt Analyse en énergie N. Besson & M. Boonekamp

Echelle d’énergie et résolution vs. E Et pour la résolution : permet de déterminer la forme de la résolution indépendamment de la forme de la résolution utilisée dans les références. terme cst  0 ss terme cst N. Besson & M. Boonekamp

Echelle d’énergie et résolution : résultats Précisions attendues sur l ’échelle d’énergie et la résolution en fonction de la statistique (ou de la luminosité) Le paramètre d’échelle peut être connu avec une précision relative de 2.10-5 avec une statistique correspondant à 10 fb-1. Le paramètre de résolution peut être connu avec une précision relative de 2.10-3 avec une statistique identique. N. Besson & M. Boonekamp

Systématiques sur MW Troisième application : systématiques sur MW Rappel : on aura, au LHC, dMW(stat)<2 MeV Les limitations viendront de notre contrôle des incertitudes systématiques, parmi lesquelles : Échelle d’énergie et résolution Efficacité de reconstruction Fonctions de structures D’autres sources notables sont l’événement sous-jacent, la radiation QED, le fond Que peut-on espérer? Consensus actuel (estimation simple): dMW(tot) ~ 20 MeV (principales sources: échelle d’énergie [10 MeV] et fonctions de structure [15 MeV]). Frustrant! Peut-on faire mieux? N. Besson & M. Boonekamp

Ingrédients Rappels : Distribution test : pT(e) (plus sensible aux pdfs que MT(W)) Methode : histogrammes de référence Fonctions de structure: CTEQ6 : 40+1 pdf sets Références générées avec le “best fit” Echantillons W,Z en leptons ~80M events/référence 10M events/“data sample”, où varient l’échelle, l’efficacité, les fonctions de structure Acceptance cuts W : 1e / pT>20 GeV, h<2.5 ; ETMiss>20 GeV Z : 2e / pT>20 GeV , h<2.5 ; 85<Mee<97 GeV MW! N. Besson & M. Boonekamp

Validation de la procédure de fit On utilise le “set” central, et on fait varier la masse injectée: Pas de biais, bonne linéarité  OK N. Besson & M. Boonekamp

Systématique sur MW : échelle d’énergie On a reconstruit l’échelle d’énergie et la linéarité du calorimètre avec une bonne précision: On tire les facteurs α(E) selon leurs résidus par rapport à la fonction mesurée sur Zee. On injecte ensuite ces facteurs dans la distributions de pT(e), et on ajuste la masse du W. N. Besson & M. Boonekamp

Systématique sur MW : échelle d’énergie Avec ~100 exercices aléatoires, on trouve une distribution de MW(fit) de largeur 3 MeV : Une autre méthode consiste à faire varier la fonction a(E), ajustée sur les Z, de façon cohérente et corrélée. On trouve MW(fit) avec une largeur de 4 MeV L’utilisation du seul calorimètre permet de réduire la syst. sur l’échelle d’énergie à ~4 MeV, dans le canal électron. A considérer : combinaison avec le tracker; le canal Z  mm; et deux expériences  Pas de problème fondamental pour arriver a dMW(scale) ~2 MeV N. Besson & M. Boonekamp

Systématique sur MW : efficacités L’efficacité e(pT), mesurée sur le Z, est paramétrée par une fonction empirique. La sensibilité de la mesure de MW vient du « coude » On tire une centaine de fonctions dans les barres d’erreur des paramètres, on applique la fonction d’efficacité résultante à pT(e), et on ajuste MW On trouve un biais de 500 MeV (corrigé si on prend en compte e(ET) au premier ordre) et une largeur de 70 MeV, induite par de(ET) La fonction est ici connue à 10% près, avec 200000 Z. Extrapoler à 10 fb-1 (~10M Zee) donne dMW(eff) ~ 10 MeV N. Besson & M. Boonekamp

Systématique sur MW : fonctions de structure Un premier essai pour quantifier l’effet brut, et à quel point on peut le “calibrer” sur le Z. Peut-on se dispenser d’un ajustement QCD complet? Ce qui se passe : d(pdf’s) d(PtW) d(higher orders) d(MW) d(yW) d(parton shower) Pour varier les fonctions de structure, on utilise les 40+1 “sets” de CTEQ6, comme auparavant biais Cause du biais Source théorique N. Besson & M. Boonekamp

Impact des fonctions de structure: on utilise, pour les fits, des « données » générées à l’aide des 40+1 « sets » de pdf, et on collecte les biais sur MW. On compare aux distorsions des distributions de pT(W) et y(W) correspondantes : < pT(W) > Même pattern dMW(fit) ~pas de correlation RMS( y(W) ) Set# N. Besson & M. Boonekamp

correlation entre pT(W) et MW(fit) N. Besson & M. Boonekamp

Jusqu’ici: Forte corrélation entre pT(W) and dMW(fit). On s’y attend : on utilise pT(e), qui reflète directement MW et pT(W). Pente = 0.3 : un biais de 3 MeV sur pT(W)  biais d’1 MeV sur MW Les distortions de y(W) n’ont pas d’impact clair Résidus de la fonction de calibration dMW(fit) = f( pT(W) ) : 6.3 MeV Précision des fits : 5.9 MeV  la connaissance de pT(W) donne dMW(fit) à 2.5 MeV près. Les 2.5 MeV restants ne peuvent venir que des distortions de y(W) Comment obtenir pT(W) ? N. Besson & M. Boonekamp

pT(Z)  pT(W) Corrélation déjà observée (cf. deuxième application); cette fois aussi pour les distributions N.B : une fois de plus, on observe le fort pouvoir des distributions W,Z pour réduire les Incertitudes venant des fonctions de structure. N. Besson & M. Boonekamp

pT(Z)  pT(W)  La mesure de pT(Z) avec 10 fb-1 donne pT(W) à 3 MeV près  Biais résultant sur MW : 1 MeV (cf. la pente de 0.3) Résidus de pT(W) = f( pT(Z) ) : 5.2 MeV Incertitudes sur les points pT(W) : 2.9 MeV Incertitudes sur les points pT(Z) : 3.1 MeV N. Besson & M. Boonekamp

Résumé MW et fonctions de structure : Aujourd’hui, dMW(pdf) ≥50 MeV (précision actuelle). Prohibitif! Mais la mesure de pT(Z) au LHC, avec 10 fb-1 donne:  dpT(W) ~ 3 MeV  dMW(fit) ~ 1 MeV (pente)  2.5 MeV (résidus, effet des distortions en yW) ~ 2.7 MeV Résultat obtenu en exploitant pT(e), vrai a fortiori si on exploite MT(W), moins sensible aux distortions de pT(W) Rien n’empêche d’utiliser plus de données! Sources analysées jusqu’ici : dMW(pdf) < 3 MeV (estimation). dMW(scale) < 4 MeV (calorimètre, canal électron uniquement!) dMW(eff) ~ 10 MeV. Source principale, pourtant jamais envisagée. (spécifique au canal électron; l’efficacité de reconstruction des muons se stabilise à plus bas pT) N. Besson & M. Boonekamp

Récapitulatif : scenario Dans quel ordre faire les mesures? Interdépendances? Le pic Z  ee avec/sans effet d’efficacités Le pic Z  ee et les fonctions de structure scenario N. Besson & M. Boonekamp

Echelle d’énergie et efficacités Efficacité ou échelle d’énergie d’abord? Rapport entre ds/dMZ avec et sans efficacité : pas de pente significative. L’échelle de masse est constante, avec ou sans fonction d’efficacité dans les « données » N. Besson & M. Boonekamp

Echelle d’énergie et fonctions de structure Impact des fonctions de structure sur l’échelle d’énergie: La somme quadratique des biais donne da ~ 2.5 MeV (précision actuelle)  non limitant! Biais (MeV) Uncertainty set N. Besson & M. Boonekamp

Conclusion : scenario d’analyse Pour un échantillon de taille donnée : L’analyse du pic donne une estimation de l’échelle d’énergie et de la résolution. Les biais venant des effets d’efficacité et des fonctions de structure sont faibles On peut ensuite analyser les formes des distributions pT(W), y(W). La connaissance de l’échelle d’énergie et de la résolution de l’appareillage permet de déconvoluer ces effets des distributions brutes  premières applications : améliorations des fonctions de structure (facteur ~10) Tests de QCD : sW vs. sZ Simultanément, une mesure absolue de l’efficacité permet de remonter aux normalisations des sections efficaces (cf. S.Jézéquel et al.) Tests poussés de QCD L’accumulation des données, la mise à jour des analyses et un monitoring précis dans le temps devraient permettre, à terme, une bonne détermination de MW. N. Besson & M. Boonekamp

spares N. Besson & M. Boonekamp

Méthode (3) Calcul des erreurs On résout une 1ère fois les systèmes pour obtenir les “valeurs centrales” des  On tire des configurations des Nij et des Pij selon dNij, dPij Les e et De sont alors la moyenne et la variance des résultats obtenus Résultats Les  ne dépendent que de (,Et), pas de (yZ, PtZ)  moyenne pondérée des mesures vs. (yZ, PtZ) Le terme L yZ,PtZ ne dépend que de (yZ, PtZ), pas de (,Et)  L yZ,PtZ = Nij /(i  j  Pij ), puis moyenne pondérée sur (i,j) Normalisation Dans chaque bin en (yZ, PtZ), on obtient des résultats où les ai doivent être tous égaux. On calcule un a global en prenant la moyenne pondérée des facteurs ai pour normaliser les efficacités calculées à la vérité MC. Une fois ces facteurs obtenus, on les applique au terme L yZ,PtZ N. Besson & M. Boonekamp

Méthode(1) But du jeu : Utiliser notre connaissance de la forme du pic du Z pour déterminer l’échelle d’énergie absolue des sous-détecteurs. On ne peut pas se contenter d’un facteur d’échelle seul pour replacer la position du pic car échelle d’énergie et résolution sont corrélées : Avec et Méthode : déterminer simultanément le facteur d’échelle et la résolution N. Besson & M. Boonekamp

Méthode(2) La corrélation dépend de la forme de la résolution. Exemple avec des Z2 leptons, à gauche résolution en a*E (électrons), à droite en a/Pt (muons). L’effet est opposé: Electrons : biais vers le bas (cf. transp. précédent) Muons : queues à haute masse a=0.% a=5.% a=10.% a=15.% a=20.% N. Besson & M. Boonekamp

Efficacité et sections efficaces Troisiéme application : sH. Peut-on tirer quelque chose de sW, sZ? Au travers d’un fit QCD global, oui. Mais quand? sW  qq ; sH  gg : pas de corrélation directe Essayons : (sW+jet)2/sW+0jet  (gq)2/qq  gg sH dsH dsH sW Une mesure précise de sW, sZ permet de réduire dsH d’un facteur ~4-5 Idée préliminaire à raffiner N. Besson & M. Boonekamp