ENERGIES PROPRES DU FUTUR :

Slides:



Advertisements
Présentations similaires
Pôle Multimédia & TIC Régional
Advertisements

Sommaire Les changements technologiques sont ils rapides ?
Quelles sont les différentes sources d’électricité en France ?
Forum MDP Maroc – Marrakech, avril Capacity Development for CDM MDP au niveau international: situation actuelle et perspectives Forum MDP.
ÉLABORATION DES PROJETS DE PETITE TAILLE
CENTRALE SOLAIRE FARAUX Anouchka 3°4 COIPEL Benjamin 3°4.
L’EFFICACITÉ ÉNERGÉTIQUE PAR L’ÉCLAIRAGE
Point de vue de la Banque mondiale : Brèche de conformité et engagements de Kyoto Charles Cormier,
TOSA 2013 Un mode de transport public de masse avec un système dalimentation optimisé
GeniLac Réseau thermique du centre ville de Genève par l’eau du Léman
Politique Technologique : le cas du Japon
Les raisons de la colère ? Le Centre National de la Recherche Scientifique (CNRS) lInstitut National de la Santé et de la Recherche Médicale (INSERM) -
All rights reserved © 2005, Alcatel Télévision Mobile sans Limite Nouvelles Applications au Service des Citoyens Sénat – 2 Novembre 2005 Olivier Coste,
La Stratégie Propriété Intellectuelle
Le marché du photovoltaïque
Lélectricité Bas carbone Ses effets sur lemploi Alain Mestre, Cabinet Syndex.
1 Sécuriser l'approvisionnement énergétique de l'Europe Energy Philip Lowe Directeur Général pour l'Energie Commission européenne.
Comité détudes n° 4 Efficacité énergétique et développement des énergies renouvelables Groupe détudes n° 2 : Techniques solaires thermiques et photovoltaïques.
Energie et mobilité: la transition Alexandre Rojey
1 MONDER2006 – 11/01/ Etudes de sensibilité pour la prospective électrique française à laide du modèle MARKAL Edi Assoumou.
Analyse de la chaîne logistique de yaourt en Grèce
LES ÉNERGIES RENOUVELABLES
Présenté par : CHEVALIER Nicolas VIVACQUA Yannis HOHNADEL Guillaume
Un exemple de collaboration réussie Une thématique technique Effet catalyseur Méthodologie transposable.
André ANTOINE Vice-Président du Gouvernement wallon Ministre du Logement, des Transports et du Développement territorial Modes de transport structurants.
Eco Quartier des Pielles à Frontignan: Etude énergétique.
Séminaire IPN Orsay, 17 septembre 2007
1 Per Langer Executive Vice President, Heat Division, Fortum 1.
Le marché du photovoltaïque
Les Tours Solaires Mael THOMAS.
Le marché du photovoltaïque
Le marché du photovoltaïque
Conseil régional du Centre // 25 novembre 2011 FEDARENE : Fédération Européenne des Agences et des Régions pour lEnergie et lEnvironnement.
Energies nucléaire et renouvelables pour un développement durable Bertrand BARRÉ, AREVA Président European Nuclear Society President International Nuclear.
Vol spatial.
Les européens et les européennes de lEurope.Les européens et les européennes de lEurope.
1 Institut de Technico-Economie des Systèmes Energétiques – 3 juin 2009 Facteurs de diffusion des technologies du « charbon propre » Nathalie Popiolek.
Département fédéral de lintérieur DFI La Suisse puissance scientifique Enjeux internationaux CF Pascal Couchepin - Président de la Confédération 17 Janvier.
FEM-5 Programme GDF/REDD+ Atelier Élargi de la Circonscription 6 au 8 juillet Dakar, Sénégal.
MEDACT Mediterranean, Europe, Development, Actions of Cities and Towns Volet 2 - phase Développement urbain durable Coordination: Ville de Rome.
1 EUROPEAN COMMISSION CLIMATE CHANGE UNIT Changement Climatique: La Stratégie Européenne Opportunité et Défis Marco LOPRIENO Unité Changement Climatique.
13e édition de la Semaine des infrastructures urbaines 1 PLAN D'INTERVENTION ET STRATÉGIES D'INVESTISSEMENTS DU RÉSEAU ROUTIER, TEL QUE VU PAR LA JAMAICA.
Lexploration spatiale au Canada Le contexte national et international Alain Berinstain Directeur, exploration planétaire et astronomie spatiale 28 mai.
La Terre dans l’Univers
Météorologie de l’Espace: Le système Ionosphère-Thermosphère
Futures missions magnétosphériques multi-satellites : THEMIS & MMS
1 Ministère de l'Écologie, de l'Énergie, du Développement durable et de l'Aménagement du territoire Lénergie solaire en région Rhône-Alpes Les installations.
Point de presse du Conseil d'Etat 13 novembre 2013
LE PROJET 2000 MW.
Pôle de compétitivité «MER, SÉCURITÉ ET SÛRETÉ, DÉVELOPPEMENT DURABLE » Pôle de compétitivité «MER, SÉCURITÉ ET SÛRETÉ, DÉVELOPPEMENT DURABLE » Présentation.
Prospective sur la Sonde Solaire
Chapitre 2 : La guerre froide. L’après guerre ( ) Objectif militaire : disposer d’un missile capable de transporter une tête nucléaire URSS et.
Proposition d'instruments pour la mesure des fluctuations magnétiques de la mission Solar Orbiter On connaît maintenant beaucoup de choses sur les ondes.
Les énergies renouvelables
LES LANCEURS SPATIAUX DEBUT DE LA CONQUETE SPATIALE
Le transport de l’énergie électrique par
L’ascenseur spatial, une clé pour une énergie inépuisable
Revue des systèmes de gestions de l’énergie (SGE)
Réacteurs du futur VHTR.
Cours d’analyse de projets d’énergies propres
4 Décembre 2014 – Salon Pollutec. La place de la chaleur en Europe 2 La chaleur en Europe L’utilisation de la chaleur en Europe European Commission 2020.
Les régions, actrices du développement économique Partager l’excellence Les régions travaillent ensemble pour un approvisionnement en énergie durable Roger.
Directeur général de l’AEN
1 SURVEILLANCE LONG TERME DES RELATIONS SOLEIL - TERRE F. Lefeuvre PNST – 30 Septembre 2005.
Version 5.2 Juillet ACTEURS ECONOMIQUES DE RHONE-ALPES PROSPECTIVE ENERGETIQUE FRANCAISE A HORIZON 2030.
1 Quel besoin de STEPs en France en 2050 ? En dehors des îles (0,5 GW), ce besoin est essentiellement lié à la part de l’énergie nucléaire dans la production.
LES SOURCES D’ENERGIE Caractérisation des énergies
Maîtrise de l’énergie en entreprise
Vous aviez peut-être déjà senti que notre monde est en danger! Vous entendez toujours dans les radios: SOS, les sources d’énergies en voie de disparition.
LPO d’Artagnan 10 Novembre Présentation Tenesol.
Transcription de la présentation:

ENERGIES PROPRES DU FUTUR : D’autres formes d’utilisation du solaire : Les centrales solaires spatiales. par Lucien DESCHAMPS Secrétaire Général - Prospective 21OO 17 novembre 2004

“Presque toute l’énergie du soleil est inutilement gaspillée pour ce qui concerne l’humanité, la Terre ne recevant que deux milliardièmes de ce que le Soleil émet. Qu’y a-t-il de si étrange dans l’idée d’utiliser cette énergie? Qu’y a-t-il de si singulier dans la pensée de pénétrer l’espace infini entourant notre Terre? Konstantin E. TSIOLKOVSKI, 1925

LE CONCEPT DE CENTRALE SOLAIRE SPATIALE Capter l’énergie solaire dans l’espace, Transmettre l’énergie vers la Terre, Collecter l’énergie sur Terre.

LE CONCEPT DE CENTRALE SOLAIRE SPATIALE Satellite éclairé d’une manière quasi continue par le soleil Orbite géostationnaire Antenne de réception Flux solaire satellite

CENTRALES SOLAIRES SPATIALES : LES ORIGINES Eléments essentiels : Aventure spatiale, K.E. TiolkovskY, 1903 - Spoutnik, 1957 - Gagarine, 1961 - Apollo 11, 1969. Orbite géostationnaire, Arthur Clarke, 1945 - Premier satellite, Syncom 3, 1951. Cellules solaires, E. Becquerel, 1839 - Première cellule à “haut rendement” (8%), 1955 : Bell Telephone, C.S. Fuller, G.L. Pearson et M.B. Prince. Transmission d’énergie sans fil (TESF). Nicholas Tesla, 1890 et 1912 - Hélicoptère de démonstration USAF, 1964.

LA PROPOSITION DU CONCEPT 1968 : Proposition du concept par Peter GLASER (A. D. Little – USA) « Power from space : its future » Science, n°162, pages 857 à 868, année 1968 1973 : Prise d’un brevet par Peter GLASER

Characteristiques Terre Espace COMPARAISON ENTRE CENTRALES SOLAIRES TERRESTRES ET CENTRALES SOLAIRES SPATIALES Characteristiques Terre Espace Flux solaire (W/m2) 1 000 1 340 Nombre d’heures d’ensoleillement 2 800 8 500 Energie reçue annuellement par m2 de cellule (kWh) 1 500 (Cellules horizontales) 2 500 (Cellules orientées) 11 500 Rendement* 0,08 0,065 Energie produite annuellement par ha sur Terre (kWh) 5 . 105 4 . 106 * Rendement = Energie délivrée au réseau / Energie captée par les cellules

PREMIERES EVALUATIONS (1968 - 1977) 1968-1972 - Premières évaluations par NASA/DOE/NRC  Pas d’obstacle absolu 1974 - Problèmes clés identifiés par la NASA 1975 - Expérimentation TESF Goldstone - Désert de Mojave - 30 kW - 1,6 km - 2 388 MHz Rendement cc/cc = 54 % 1976 - Proposition du “ Concept Development and Evaluation program” (CDEP) par l’ ERDA (Etude de référence - 15 M$ sur 3 ans)

WPT GOLDSTONE EXPERIMENT - 1975

SYSTEME DE REFERENCE : 1977 - 1981 (Concept Development and Evaluation Program – 19,1 M$) 60 Centrales spatiales – Puissance unitaire au sol : 5 GWe Production Cellules solaires Si ou As.Ga – Satellites géostationnaires (10 km x 5 km x 0,5 km – 35 à 50 000 tonnes) Transmission Micro-ondes = 2,45 GHz – Klystrons – Antenne = 1 km2 Reception Rectenna = 85 km2 pour 5 GW Densité maximale d’énergie = 23 mW / cm2 Transport Terre  LEO = HLLV – 100 à 400 tonnes LEO  GEO = EOTV – 4 000 à 5 000 tonnes Navettes pour le personnel. Construction 2 centrales / an – 600 ouvriers dans l’espece Maintenance : 240 personnes Coûts Investissement initial = 102,4 milliards de Dollars Couts variables = 11,3 milliards de Dollars par centrale 1 200 – 3 500 $ / kW (1981) 2 – 2,5 Cents / kWh (1981)

SPS - Système de référence 5 GW, 10 km x 5 km x 0,5 km, 35 à 50 000 tonnes

SPS - Système de référence Antenne de réception « Rectenna »

EVOLUTION DES TECHNIQUES Nouvelles technologies et concepts nouveaux, Structures gonflables, câbles, supraconducteurs,….. 2. Technologies avancées de cellules solaires, 3. Amélioration des techniques de TESF, 4. Nouveaux lanceurs, 5. Evolution des techniques de robotique, 6. Perspectives des matériaux extraterrestres.

CONCEPT INNOVANT

NOUVEAU CONCEPT DE CENTRALE Structure « Sandwich »

HISTOGRAMME DU RENDEMENT DES CELLULES SOLAIRES à scanner Années

TECHNOLOGIES AVANCEES DE CELLULES SOLAIRES Characteristiques  Si Faible coût 15 % GaAs Masse et coût élevés 20 % GaAs / Ge Masse et coût similaire au Si 22 % InP Coût élevé, bonne résistance aux radiations 19 % Quadrispectral Coût élevé 40 % Thin Film Faible masse, faible coût 10 %

L’accès à l’espace coûte aujourd’hui 10 000 à 20 000 $ / kg; Ceci n’est acceptable que pour des applications mettant en oeuvre des masses réduites. Besoin de réduire le coût du lancement dans l’espace et d’augmenter la fréquence des tirs.

TRANSPORT SPATIAL

COMPOSITION DU SOL LUNAIRE

UTILISATION DE MATERIAUX EXTRATERRESTRES Trois concepts sont considérés comme susceptibles de fournir une énergie abondante, propre et économique : Centrales solaires spatiales Centrales solaires lunaires Utilisation de l’He3 pour la fusion sur Terre Ces trois concepts nécéssitent des études techniques et économiques complémentaires. Ces études imposeront un retour sur la Lune, l’implantation de bases et le développement d’usines d’exploitation et de traitement des matériaux.

CENTRALES SOLAIRES SPATIALES Principaux groupes actifs en 2004 (1/2) IAF - Comité “Energie”, USA - NASA, Sunsat Energy Council, Universités, Lunar Power System Coalition, Industriels, AIAA, Japon - USEF, NASDA METI,Ministry of Economy, Trade and Industry Universités Industriels Russie - Académie des Sciences Ukraine - Universités Georgie - Industriels

CENTRALES SOLAIRES SPATIALES Principaux groupes actifs en 2004 (2/2) Europe - ESA CNES, CNRS, France Universités : La Réunion, France Industriels : EADS, Allemagne / France Chine - Shanghai Institute of Space Power Sources Inde - Global Future Networks Indonésie - Institut de Technologie de Bandung (ITB)

RECENTES EVALUATIONS ET PROJETS USA : NASA - Fresh Look Study, SPS Concept Definition study, SPS Exploration Research and Technology Program (SERT) (1999 - 2001), SPS Concepts & Technology Maturation Program (SCTM)(2001-2002). CANADA : Canadian Space Power Initiative (1999). EUROPE : ESA - Solar Power From Space - Europeen Strategy in the Light of Global Sustainable Development (2003 - 2005). ESSPERANS - Energy, Space, Solar Power, Environment : Research Actions for a New Society . EADS - Space Power Initiative. JAPON : USEF - Groupe d’évaluation (2001 - 2002). FRANCE : CNES - Groupe d’évaluation (1999).

Integrated symmetrical concentrator - 1,2 GW

PROGRAMME ESA “ENERGIE DE L’ESPACE” ( 2003 - 2005) Energie solaire de l’espace : stratégie européenne s’intègrant dans une approche globale de développement durable (SPS Project). Principaux objectifs : Comparaison des solutions solaires terrestres et spatiales - synergies possibles, Role potentiel pour l’exploration spatiale Proposition d’1 à 3 concepts innovants, Identification des problèmes techniques nécéssitant R&D, Etudes pour la réalisation de missions de démonstration à court terme, Evaluation de voies permettant d’intégrer les centrales spatiales dans une économie basée sur l’hydrogène, Coordination des recherches européennes et identification d’ opportunités pour des coopérations internationales.

European sail tower concept 0,5 GW, 0,3 km x 15 km, 2140 tonnes

PROGRAMME ESA “ENERGIE DE L’ESPACE” ( 2003 - 2005) Comparaison des solutions solaires terrestres et spatiales - synergies possibles (Phase 1) Principaux résultats : Les concepts spatiaux ne sont pas compétitifs pour des centrales de taille relativement petite, plus les centrales sont grandes plus l’option spatiale devient intéressante. L’option terrestre offre la possibilité d’une large décentralisation, Le choix du système de stockage a une grande influence sur le coût de l’électricité produit par les centrales terrestres destinées à founir de l’électricité de base,

Coûts de lancement permis PROGRAMME ESA “ENERGIE DE L’ESPACE” ( 2003 - 2005) Comparaison des coûts de centrales solaires terrestres et spatiales fournissant de la puissance de base avec stockage par hydrogène ou par bassin d’eau (entre parenthèses). Taille des centrales en GWe Concept Coût de l’électricité en € / kWh Coûts de lancement permis en € / kg 0,5 Terrestre Spatial 0,090 (0,059) 0,280 (0,280) 5 0,082 (0,053) 0,044 (0,053) 750 (200)

OBJECTIFS DE L’ETUDE JAPONAISE USEF (2001 - 2002) Institute for Unmanned Space Experiment Free Flyer 2030 - Expérimentation d’un prototype d’1 GW, 2040 - Lancement commercial d’une centrale 1 GW, Puissance unitaire des rectennas : 1 GW / rectenna, Coût de l’énergie : 10 cents de $ / kWh, Emission minimale de CO2, Evaluation des effets des rayonnements micro-ondes.

PROJET JAPONAIS USEF : SCENARIO DE CONSTRUCTION

PROJET JAPONAIS CONNECTION AU RESEAU A COURANT ALTERNATIF

LES CENTRALES SPATIALES ET L’ ENVIRONMENT L’impact des centrales spatiales sur l’environnement devra être étudié en profondeur et expliqué au public: - Effets biologiques des micro-ondes, - Effets des micro-ondes sur l’ionosphère, - Transport spatial, - Construction dans l’espace et exploitation, Construction et exploitation de la rectenna, - Effets sur les systèmes électroniques et de communication, - Effets sur l’astronomie, - Utilisation des ressources et effets industriels.

EMISSIONS DE CO2 SUIVANT LES RESSOURCES

PROBLEMES SOCIETAUX ET INSTITUTIONNELS - Implications internationales, - Aspects juridiques, - Propriété et controle des centrales, - Vulnérabilité et implications militaires, Interface avec les réseaux, - Acceptabilité du public.

EN CONCLUSION Amélioration rapide des concepts depuis 20 ans. Réduction importante des coûts. Capacités énergétiques importantes, Pas d’émission de CO2, Intégration dans une économie basée sur l’électricité et l’hydrogène, Compatibilité avec les centrales solaires terrestres, Concepts durables parmi les plus prometteurs à long terme, Option à considérer dans les scénarios énergétiques post 2040.

VERS UN FUTUR DEVELOPPEMENT Lancer un programme étape par étape Organiser une coopération internationale Démarrer une première étape Court terme : Sur Terre - Projets de démonstration TESF, - Liaisons point à point, - Alimentation de plate-formes “haute altitude”. Moyen terme : Dans l’espace - Alimentation de plate-formes dans l’espace, - Propulsion, - Transmission d’énergie par satellites relais. Long terme : - Centrales solaires spatiales, - Energie pour bases lunaires et martiennes, - Utilisation des matériaux extra-terrestres.

PERSPECTIVES D’IMPLANTATION DES CENTRALES SPATIALES DANS LE MONDE EN 2100