Premier Copil Technique SP4 SP4 = modes d'accès innovants 20070309
Agenda Partenaires impliqués dans le SP4 Rappel des objectifs du SP4 Présentation de l’OBS et WBS actuels Liste des tâches en cours Présentation du document de définition des tâches Progrès technique du SP4 sur les tâches actives
Objectifs et tâches Rechercher Context: Pôle de compétitivité System@tic, Urbanisme des RadioCommunications Objectifs: Proposer des améliorations des accès radio sans fil afin de les adapter à une gestion plus dynamique du spectre et d'élaborer des concepts nouveaux Retombées: augmentation du débit total moyenné sur le réseau ou du nombre d'utilisateurs servis et une réduction de l’interférence contribuant à un assainissement global de l’écosystème sans fil Division en 4 tâches: Tâche 4.1: Gestion conjointe des ressources radio Tâche 4.2: Optimisation conjointe des couches accès et physique Tâche 4.3: Couche physique distribuée : réseaux maillés, relais coopératifs et réseaux MIMO virtuels Tâche 4.4: Schémas de transmission multiantennes avancés Tâche 4.5: Retournement temporel Rechercher
Organisation Responsables SP4 par org.: FT: Manfaï Wong Partenaires impliqués: FT, Motorola, Thales, Comsis, Sequans, GET/ENST, ETIS/UCP, Supelec, INRETS Conseillé scientifique: I. Fijalkow, ETIS/UCP Responsable SP4: Marc de Courville, Motorola Responsables SP4 par org.: FT: Manfaï Wong Motorola: Marc de Courville Comsis: Philippe Leclair Sequans: Paul Bazzaz GET/ENST: Philippe Ciblat Thales: Isabelle Icart ETIS/UCP: Inbar Fijalkow Supelec: Jocelyn Fiorina INRETS: Abderrazak Abdaoui
Rôles des partenaires: Matrice OBS
WBS pour chaque tâche
Tâche 4.1: Gestion conjointe des ressources radio Responsable: Motorola (David Grandblaise) Laison: Motorola (David Grandblaise), Supelec (Jocelyn Fiorina) Livrable D4.1.1: Mécanismes de gestion conjointe de ressource intra et inter systèmes (Rapport/Simulations) Editeur: Motorola (Véronique Buzenac) Tâche: Mono systeme: gestion d’interference Durée: T0+8->T0+36 Acteurs: Supelec (Pascal Bianchi) et Motorola (Véronique Buzenac), ETIS/UCP (Fijalkow), GET/ENST (Ciblat/Hachem), Thales (Le Martret), INRETS (Berbineau) Sous-Tâche: Allocation de ressources OFDMA (niveau système avec algo de scheduling avancés) (IEEE802.16e/m) Durée: T0+8->T0+20 Acteurs: Supelec Mohamad Assaad, Motorola Véronique Buzenac, ETIS/UCP (Fijalkow), GET/ENST (Ciblat/Hachem), Thales (Le Martret) Sous-Tâche: Déploiement single frequency reuse (IEEE802.16e/m) Durée: T0+12->T0+36 Acteurs: Motorola: Véronique Buzenac, INRETS (Berbineau) Jalon: Transfert vers SP3 des résultats de simus T0+24 Tâche: Intra-systèmes: mechanismes dynamiques de partage de canaux inter-operateurs, coexistence et partage de spectre Durée: T0->T0+20 Acteurs: Motorola (David Grandblaise) Sous-Tâche: Métaheuristique distribuée Sous-sous-Tâche: IEEE802.16h Durée: T0->T0+12 Acteurs:Motorola David Grandblaise Sous-sous-Tâche: IEEE802.22 Durée: T0+12->T0+20 Acteurs: Motorola David Grandblaise Jalon: Tranfert vers SP3 des métaheuristiques T0+12
Tâche 4.2: Optimisation conjointe des couches accès et physique Responsable: ETIS/UCP (Charly Poulliat) Laison: Thales (Christophe Le Martret), Motorola (Sébastien Simoens), Sequans (Paul Bazzaz), ETIS/UCP (Inbar Fijalkow, Assimi) Livrable D4.2.1: Modulation/Codage adaptatif et HARQ (Rapport intermédiaire/Simulations) Editeur: Thales (Christophe Le Martret) Tâche: étude codages adaptatifs HARQ/AMC état de l’art Durée: T0->T0+6 Acteurs:Thales (Christophe Le Martret), Motorola (Sébastien Simoens), Sequans (Paul Bazzaz), ETIS/UCP (Inbar Fijalkow, Assimi, HARQ type II, égaliseur conjoint SIMO) Tâche: stratégies de choix adaptatif de mode de transmission (metrique, IR, SISO&MIMO, lien codage, latence QoS & persistance) Durée: T0+6->T0+18 Acteurs:Thales (Christophe Le Martret), Motorola (Sébastien Simoens), Sequans (Paul Bazzaz), ETIS/UCP (Inbar Fijalkow) Jalon: Transfert vers SP3 des résultats de simus T0+24 Livrable D4.2.2: Modulation/Codage adaptatif et HARQ (Rapport final/Simulations) (Combinaison HARQ/AMC) Editeur: ETIS/UCP (Inbar Fijalkow) Tâche: influence d’une connaissance imparfaite ou partielle du canal de transmission avec décodage itératif (mono, multiuser) Durée: T0+18->T0+36 Acteurs: ETIS/UCP (Inbar Fijalkow) Jalon: modèles de canaux en provenance de SP2/3 T0+12
Tâche 4.3: Couche physique distribuée: réseaux maillés, relais coopératifs et réseaux MIMO virtuels Responsable: Supélec (Jocelyn Fiorina) Liaison: Thales (Isabelle Icart en interim), Motorola (Sébastien Simoens), Supelec (Jocelyn Fiorina), GET/ENST (Philippe Ciblat), INRETS (Abdaoui) Livrable D4.3.1: Réseaux coopératifs, antennes virtuelles et relais Editeur: Thales Tâche: relais coopératif Durée: T0->T0+12 Acteurs: Thales (Isabelle Icart), Motorola (Sébastien Simoens), GET/ENST (Philippe Ciblat),Supélec Tâche: modulation et codage distribué VMIMO, collaborative BST Durée: T0+6->T0+18 Acteurs: Thales (Isabelle Icart en interim), Motorola (Laurent Mazet), Supelec (Jocelyn Fiorina, Antoine Berthet), GET/ENST (Philippe Ciblat) Livrable D4.3.2: Réseaux coopératifs et réseaux ad-hoc/maillés Editeur: Supelec (Jocelyn Fiorina) Tâche: Adhoc and pervasive networks. IEEE802.15.5 et alternatives Durée: T0+6->T0+36 Acteurs: Thales, Supelec (Jocelyn Fiorina), INRETS (Marion Berbineau) Jalon: T0+12, importation du SP3 des contraintes de méthodologie de simulation à appliquer aux réseaux maillés et relais coopératifs. Jalon: T0+24, transfert au SP3 des résultats de performance des nouvelles méthodes mise en œuvre sur réseaux maillés et relais coopératifs. Jalon: T0+36, livrable. Tâche: algorithmes d’inférence distribuée appliqués au traitement de l’information dans les réseaux sans fil centralisés et décentralisés Durée: T0+9->T0+36 Acteurs: Supelec (Antoine Berthet, Mithridad Pourmir)
Tâche 4.4: Schémas de transmission multiantennes avancés Responsable: GET/ENST (Philippe Ciblat) Liaison: GET/ENST (Philippe Ciblat/Jean-Claude Belfiore), Motorola (Stéphanie Rouquette/Véronique Buzenac), Supelec (Jocelyn Fiorina), Sequans (Paul Bazzaz), INRETS (Abdaoui), Comsis (Leclair) Livrable D4.4.1: Nouvelles modulations MIMO avancées pour IEEE802.11n et IEEE802.16e/m : techniques multi-utilsateurs et formation de voies (Rapport/Simulations) Editeur: ETIS/UCP (Philippe Ciblat) Tâche: Schémas MU-MIMO classique: SDMA (MU-MIMO UL&DL), STC distribués (MU-MIMO UL) Durée: T0->T0+12 Acteurs: Motorola (Stéphanie Rouquette), Supelec (Jocelyn Fiorina, Mohamad Assaad), Sequans (Paul Bazzaz), INRETS (Abdaoui) Tâche: Schémas MU-MIMO downlink avancés: DPC, Opportunistic beamforming, précodage linéaire Durée: T0+6->T0+18 Acteurs: GET/ENST (Philippe Ciblat/Jean-Claude Belfiore), Motorola (Véronique Buzenac), Supelec (Jocelyn Fiorina, Mohamad Assaad), Sequans (Paul Bazzaz), INRETS (Marion Berbineau) Livrable D4.4.2: Nouvelles modulations MIMO avancées pour IEEE802.11n et IEEE802.16e/m : code spatio-temporels parfaits (Rapport/Simulations) (pb du canal de Rice) Editeur: GET/ENST (Jean-Claude Belfiore) Tâche: codes spatio-temporels parfaits, construction de codes pour connaissance partielle des canaux au TX Acteurs: GET/ENST (Jean-Claude Belfiore), Motorola (Stéphanie Rouquette), Comsis (Leclair), Supelec (Jocelyn Fiorina), Sequans (Paul Bazzaz), INRETS (Abdaoui) Tâche: precodage, étalement et codes hybrides STC, TxBF Durée: T0+12->T0+36 Acteurs: GET/ENST (Philippe Ciblat/Jean-Claude Belfiore), Motorola (Patrick Labbe) Jalon: T0+6, importation des méthodologies de simulation du SP3 en terme de modèles de canaux, de couplage d’antennes et d’environnement pour procéder à des simulations réalistes Jalon: T0+24, transfert au SP3 des nouvelles méthodes MIMO développées dans le SP4
Tâche 4.5: Analyse du retournement temporel Responsable: France Telecom (Manfaï Wong) Liaison: France Telecom (Manfaï Wong) Livrable D4.5.1: Rapport sur les fondements et la mise en œuvre expérimentale (Rapport/Simulations) Editeur: France Telecom (Manfaï Wong) Tâche: Fondements du retournement temporel, questions théoriques des ondes électromagnétiques Durée: T0->T0+18 Acteurs: France Telecom (Manfaï Wong), Supelec (Jocelyn Fiorina) Livrable D4.5.2: Analyse des spécificités liées aux ondes électromagnétiques (Rapport/Simulations) Tâche: Mise en œuvre expérimentale du retournement temporel dans les ondes radioélectriques. Analyse des techniques de retournement temporel Durée: T0+18->T0+30 Acteurs: France Telecom (Manfaï Wong) Tâche: Comparaison avec les techniques usuelles d'égalisation Durée: T0+24->T0+36
Récapitulatif fournitures
WBS
Planification 1/2
Planification 2/2
Remontés au COPIL global Modèles de canaux variant dans le temps pour <T0+12, provenance: SP2/3; à défaut réutilisation résultats existants (Normes/projets Européens) mais nécessité de validation SP2/3 Clarification politique de publication Publications au GRETSI du SP4 sans procédure de review et aval de URC Retour d’expertise sur les stratégies réseau/crosslayer
Sous-tâches actives du SP4 SP4.1 Gestion conjointe des ressources radio (Motorola David Grandblaise) Livrable D4.1.1: Mécanismes de gestion conjointe de ressource intra et inter systèmes (Rapport/Simulations) Tâche: Intra-systèmes: coexistence et partage de spectre Sous-Tâche: Métaheuristique distribuée IEEE802.16h Durée: T0->T0+12 Acteurs: Motorola (David Grandblaise) SP4.2 Optimisation conjointe des couches accès et physique (ETIS/UCP: Charly Poulliat) Livrable D4.2.1: Modulation/Codage adaptatif et HARQ (Rapport intermédiaire/Simulations) (Thales Christophe Le Martret) Tâche: étude codages adaptatifs HARQ/AMC état de l’art Durée: T0->T0+6 Acteurs:Thales (Christophe Le Martret), Motorola (Sébastien Simoens), Sequans (Paul Bazzaz), ETIS/UCP (Inbar Fijalkow, Assimi, HARQ type II, égaliseur conjoint SIMO) SP4.3 Couche physique distribuée: réseaux maillés, relais coopératifs et réseaux MIMO virtuels (Supelec Jocelyn Fiorina) Livrable D4.3.1: Réseaux coopératifs, antennes virtuelles et relais (Thales: Marc Chenu) Tâche: relais coopératif: accroissement de la capacité et résolution des problèmes de masquage, aspects pratiques Durée: T0->T0+12 Acteurs: Thales (Marc Chenu), Motorola (Sébastien Simoens), GET/ENST (Jean-Claude Belfiore), Supelec (Fiorina), INRETS (Abdaoui) SP4.4 Schémas de transmission multiantennes avancés (GET/ENST Philippe Ciblat) Livrable D4.4.1: Nouvelles modulations MIMO avancées pour IEEE802.11n et IEEE802.16e/m : techniques multi-utilsateurs et formation de voies (Rapport/Simulations) (ETIS/UCP Inbar Fijalkow) Tâche: Schémas MU-MIMO classique: SDMA (MU-MIMO UL&DL), STC distribués (MU-MIMO UL) Durée: T0->T0+12 Acteurs: Motorola (Stéphanie Rouquette), Supelec (Jocelyn Fiorina, Mohamad Assaad), Sequans (Paul Bazzaz), INRETS (Abdaoui) SP4.5 Analyse du retournement temporel (France Telecom Manfaï Wong) Livrable D4.5.1: Rapport sur les fondements et la mise en œuvre expérimentale (Rapport/Simulations) Tâche: Fondements du retournement temporel, questions théoriques des ondes électromagnétiques Acteurs: France Telecom (Manfaï Wong), Supelec (Jocelyn Fiorina) Durée: T0->T0+18
SP4 technical highlights
SP4.1.1 Study 1: DCA extension for Inter-BSs channels sharing Objective: Assess and analyze channels sharing trunking gain when channels can be shared in a distributed fashion (cell by cell basis) between BSs with heterogeneous frequency reuse distances constraints in a simple scenario. Approach: Pooling system in which classical dynamic channel allocation (DCA) scheme is generalized. Problem formulation will be provided in SP4.1 and simulation/results will be provided in SP3. Expectations: This preliminary analysis will provide some guidance in which circumstances inter-BSs channel sharing should be triggered or not to ensure some trunking gain.
SP4.1.1 Study 2: Inter-BSs channels offering/renting strategies Objective: Design some real time inter-BSs channel sharing negotiation strategies in support of channel offering/renting between BSs. Approach: Offering/renting meta-heuristics (auctioning based or not) will be proposed in SP4.1. Simulation/results will be provided in SP3. Expectations: Results of this study are expected to be disseminated in 802.16h/802.22 standardization bodies as solutions for 802.16h/802.22 systems self-coexistence (cognitive radio based).
SP4.2.1 Efficient CQI for AMC in IEEE802.11n Current systems provide a lot of MCS (1930 for 11n) Spectrum efficiency is conditioned to the reliable choice of the MCS depending on the transmission medium quality Accurate CQI indicators is a must in next generation systems Traditional approaches rely on a SNR based criterion for performing AMC Issue: large standard deviation of the PER distribution at a given SNR as a function of channel realizations Progress: mutual information/exp-ESM based metrics 7dB shift with respect to ergodic capacity limit with linear receiver and punctured convolutional codes Illustration: from 1x1 IEEE802.11a link to IEEE802.11n 2x2
SP4.2.1: HARQ, context of the study HARQ is an extension of standard ARQ which greatly improves wireless channels reliability (throughput, efficiency) Incremental Redundancy (type III HARQ) is a throughput-efficient technique (progressively adapts FEC redundancy level according to channel state conditions) MSDU-HARQ is proven to be more efficient than MPDU-HARQ M = 6 M = 3 Simulation results over Gaussian channel
SP4.2.1: WIP, expected results Build an Omnet simulation including : Radio Access layer model (MAC+PHY) Incremental redundancy HARQ techniques Gaussian / Rayleigh fading radio channel models Ad-hoc network configuration : Traffic generated by means of Poisson statistics Dynamic priority-based allocation scheme Cooperative relaying Performance (throughput, efficiency) measurements at MAC level IP-level performance estimations
SP4.2.1 H-ARQ with integrated turbo-equalization Channel Model : We adopt Nakagami-m block fading channel model. It includes large class of fading channels (Rayleigh, Rician). Channel coefficients h=(h0,…hL) are i.i.d. Gaussian random variables. hi are constant over the duration of each packet and independent from one packet to another. Turbo-equalization : Iterative signal detection and error correction. Channel diversity : Codeword is divided to B blocks of equal length. Each block is sent over an independent fading channel.
SP4.2.1: Turbo-Equalization Low complexity : Simple filter-based MMSE-turbo equalizer with linear complexity as function of channel length and modulation alphabet size (*). Performances are closed to those of the MAP equalizer Fast convergence : Only 3 iterations are needed to achieve flat-fading channel performance. Turbo-equalization gain : Important SNR gain in frame error rate allowing equivalent gain in throughput performance in H-ARQ system. (*) submitted to GRETSI-07
SP4.2.1 H-ARQ with joint equalization Channel diversity : Average SNR per received packet variation is reduced with increasing number of blocks per coded packet. SNR distribution : (m = B x L) Block combining: Multiple received replicas of each block are jointly equalized. H-ARQ mode between Chase Combining (CC) and Incremental Redundancy (IC) is possible.
SP4.3.1: Motivations for cooperative relaying Relaying is a reality Products are there (e.g. MotoMesh® city-wide networks) Standards are on the way (802.11s, 802.16j) Motivation for Relaying Combat the throughput drop vs. distance Limit the deployment cost (wireless backhaul) Increase the total system capacity What is cooperative relaying? Constructive transmissions from source and relay(s) are recombined at destination (2 hop case) Why cooperative relaying? Improves coverage/capacity by virtual MIMO techniques Can benefit from both infrastructure and user density Cooperative Relaying Single-Path Relaying Direct Interference or contribution?
SP4.3.1: preliminary benchmarking No relay Non cooperative D&F No relay Coop D&F More than 80 Mb/s is offered in a significant area around relays Poor coverage persists in regions far from both BS and RS The BS transmits in phase 1, the RS transmits in phase 2, the MT combines signals from both phases (e.g. MRC, Incremental Redundancy, Distributed STC, etc…) Poor coverage persists in regions far from both BS and RS Metric: DL single user maximum (TDMA sched) average (fading) mutual information BS: 3 sectors 4AE, MT Omni 2TX lower power Propagation: LOS BSRS, NLOS BSMT & RSMT RS&BS share the TDD/TDMA Urban micro cell deployment, 20MHz BW BS RS MT
SP4.3.1 Cooperative D&F in the downlink Cooperative C&F in the uplink BS RS Around the BS, can use Direct Link Around the RS, cooperation yields only small increase (~+20%) Highest improvement in poor coverage areas (~+50%) BS RS Close to the relay use D&F C&F may increase uplink throughput in poor coverage areas Figure: Relative increase of the peak throughput by cooperative D&F relaying vs. best of non-cooperative techniques Figure: Ratio Cooperative C&F UL throughput vs. Cooperative D&F
SP4.4.3 Linear precoding Observation: Rice channels are present between BS<->RS and also in LOS situations (indoor/outdoor) Linear precoding: proposition of new precoding matrix based on optimization of outage probability specifically for Rice channels Literature : precoding matrix based on ergodic capacity MMSE approach to select a relevant matrix (modification of the well-known waterfilling matrix) Approximation at low SNR of outage probability Simulation result : Rice channel (Ricean factor = 7dB)
SP4.4.1 Cooperative BS Background Frequency reuse 1 networks allow allocation of all the pool of available frequencies to the entire network Consequence: interference level increases reducing link capacity on cell borders Solution for uplink transmission: cooperative decoding of one user by multiple base-stations (Virtual Antennae Array) Resulting problem addressed by invention: selection of base-stations participating in decoding (sub-network) to reduce the amount of data to be transmitted on the backhaul
SP4.4.1 Cooperative BS Selection procedure Cooperative MMSE decoding link capacity Possible selection procedure: select base-stations by performing SNR ordering (simple but far from optimality) Optimal solution: compute capacity for all possible combinations (complexity affordability issue) Our proposal: a selection algorithm in the spirit of the sphere decoding algorithm i.e. Elect a first set of base-stations based on the SNR criterion. For each selected base-station S: Evaluate the resulting throughput (based on any criterion e.g. the capacity) by substituting this base-station S by a candidate one C belonging to the unselected set If the capacity is improved, the candidate base-station C is elected and replace the previously selected base-station S. S is then reassigned to the pool of unselected base-stations This process (step 2) can be iterated to refine the selection and reach a better selection
SP4.4.1 Cooperative BS Performance improvement Figure illustrates capacity gain function of the BS number (from 1 to 19) on min and max capacity point for FR1N compared to classic cellular network Gain depends on selection algorithm: e.g. for 7 BS on minimal capacity point we have: 3x with an SNR selection 5x with our sphere like algorithm 6x with exhaustive search Sphere like algorithm provides scalable complexity It preserves important gain with a substantial reduction of the backhaul load
SP4.4.2: Proprietary STBC schemes for IEEE802.11n Golden Code: 2x2 STBC Full Rate Full Diversity (FR/FD) Coding Gain Enhancement by optimized TCM(Patented in 2005) Patented Golden Code decoder in 2006 Claims: Near Maximum Likelihood Performances (≤ 1dB) Low complexity Outperforms VBLAST 4x4 Progress: Low complexity decoder architecture for hardware implementation Plans: 2x3 802.11n development board in June 07 802.11n SoC (2H07)
SP4.4.2: GC simulation results Source: Comsis
SP4.5.1: plans Goal: Analysis of the potential of time reversal for Study the basic principles of Time Reversal (TR) Set up the basic TR experiment in a reverberation chamber Simulate TR experiment with electromagnetic modeling tools (FDTD, other, …) Discuss theoretical questions Output : experimental and virtual platform for testing TR Progress report in July 07
SP4.5.5: progress and results Definition and implementation of the basic TR experiment in reverberation chamber amplifier 50dB Arbitrary wave generator AWG 710B, 4.2Gs/s antenna Reverberation chamber antenna Digital oscilloscope TDS 6124C 12GHz, 40Gs/s
SP4.5.1 : progress and results Simulation with 2D FDTD
Règles de fonctionnement Format des livrables Version définitive rendue 2 semaines avant date contractuelle Langue: anglaise Nomenclature: URC/SPx/Dx.y.z x : de 0 à 4 représentant le sous projet générateur du document. y : numéro de Tâche dans le sous projet générateur du document. A zéro dans le cas d’un compte rendu. z : numéro de fourniture dans la Tâche ou numéro d’ordre dans le cas d’un compte rendu. Hiérarchie Sous-Projet/Tâche/Activité/Contribution Format compatible: Microsoft Word, Excel, Power Point, MSP, Visio Fréquence des réunions d’avancement: Physique: tous les 3 mois, conférence téléphonique mensuelle
Liste de diffusion Validation de la liste de contributeurs technique ETIS: inbar.fijalkow@ensea.fr, charly.poulliat@ensea.fr, abdelnasser.assimi@ensea.fr ENST: philippe.ciblat@enst.fr, walid.hachem@enst.fr, jean-claude.belfiore@enst.fr SUPELEC: antoine.berthet@supelec.fr, jocelyn.fiorina@supelec.fr, mohamad.assaad@supelec.fr, pascal.bianchi@supelec.fr, mithridad.pourmir@supelec.fr FT: manfai.wong@orange-ftgroup.com THALES: Christophe.LE_MARTRET@fr.thalesgroup.com, Marc.CHENU@fr.thalesgroup.com, isabelle.icart@fr.thalesgroup.com SEQUANS: paul@sequans.com COMSIS: p.leclair@comsis.fr INRETS: marion.berbineau@inrets.fr, abdaoui@inrets.fr MOTOROLA: stephanie.rouquette@motorola.com, patrick.labbe@motorola.com, laurent.mazet@motorola.com, Veronique.Buzenac@motorola.com, Mohamed.Kamoun@motorola.com, david.grandblaise@motorola.com, simoens@motorola.com, remy.pintenet@motorola.com
Telco 200703: Points à discuter Description des tâches actives et échéances Mise à jour Avancement: chaque partenaire présente en 5 minutes un résumé de ses activités techniques (progrès par rapport à la réunion de lancement) sous la forme d’un transparent Nouveautés et mise à jour site collaboratif Disséminations Préparation du COPIL technique: Format et durée: identifications des présentations techniques Représentant non académique Remontés COPIL technique global: compléter la liste
Progrès technique à reporter SP4.1 Gestion conjointe des ressources radio (Motorola David Grandblaise) Livrable D4.1.1: Mécanismes de gestion conjointe de ressource intra et inter systèmes (Rapport/Simulations) Tâche: Intra-systèmes: coexistence et partage de spectre Sous-Tâche: Métaheuristique distribuée IEEE802.16h Durée: T0->T0+12 Acteurs: Motorola (David Grandblaise) SP4.2 Optimisation conjointe des couches accès et physique (ETIS/UCP: Charly Poulliat) Livrable D4.2.1: Modulation/Codage adaptatif et HARQ (Rapport intermédiaire/Simulations) (Thales Christophe Le Martret) Tâche: étude codages adaptatifs HARQ/AMC état de l’art Durée: T0->T0+6 Acteurs:Thales (Christophe Le Martret), Motorola (Sébastien Simoens), Sequans (Paul Bazzaz), ETIS/UCP (Inbar Fijalkow, Assimi, HARQ type II, égaliseur conjoint SIMO) SP4.3 Couche physique distribuée: réseaux maillés, relais coopératifs et réseaux MIMO virtuels (Supelec Jocelyn Fiorina) Livrable D4.3.1: Réseaux coopératifs, antennes virtuelles et relais (Thales: Marc Chenu) Tâche: relais coopératif: accroissement de la capacité et résolution des problèmes de masquage, aspects pratiques Durée: T0->T0+12 Acteurs: Thales (Marc Chenu), Motorola (Sébastien Simoens), GET/ENST (Jean-Claude Belfiore), Supelec (Fiorina), INRETS (Abdaoui) SP4.4 Schémas de transmission multiantennes avancés (GET/ENST Philippe Ciblat) Livrable D4.4.1: Nouvelles modulations MIMO avancées pour IEEE802.11n et IEEE802.16e/m : techniques multi-utilsateurs et formation de voies (Rapport/Simulations) (ETIS/UCP Inbar Fijalkow) Tâche: Schémas MU-MIMO classique: SDMA (MU-MIMO UL&DL), STC distribués (MU-MIMO UL) Durée: T0->T0+12 Acteurs: Motorola (Stéphanie Rouquette), Supelec (Jocelyn Fiorina, Mohamad Assaad), Sequans (Paul Bazzaz), INRETS (Abdaoui) SP4.5 Analyse du retournement temporel (France Telecom Manfaï Wong) Livrable D4.5.1: Rapport sur les fondements et la mise en œuvre expérimentale (Rapport/Simulations) Tâche: Fondements du retournement temporel, questions théoriques des ondes électromagnétiques Acteurs: France Telecom (Manfaï Wong), Supelec (Jocelyn Fiorina) Durée: T0->T0+18
<Partner> progress report 4.1: 4.2: 4.3: 4.4: 4.5
Remontés au COPIL global Modèles de canaux variant dans le temps pour <T0+12, provenance: SP2/3; à défaut réutilisation résultats existants (Normes/projets Européens) mais nécessité de validation SP2/3 Clarification politique de publication Publications au GRETSI du SP4 sans procédure de review et aval de URC Retour d’expertise sur les stratégies réseau/crosslayer
Détails WP4.1 Dynamic inter BSs channels sharing between operators Objectives: Assess inter BSs channels sharing trunking gain in a simple scenario Define real time channles sharing negotiation strategies (bidding or not bidding based) between operators Application area for 1): 802.22 or 802.16h systems self coexistence Progress on 2): Problem statement formulation Design of an extended dynamic channel allocation (DCA) for inter BSs channels pooling
Supélec progress Most of the tasks begin at T0+6 4.3: State of the art on information theory for relaying and cooperation. 4.4 Study of opportunistic beamforming to exploit multiuser diversity in slow fading channel. 4.5 Time Reversal: investigation of time reversal strategy for Impulse Radio Ultra Wide Band systems. Comparison with traditional equalization without time reversal.
Motorola progress 4.1 Dynamic inter BSs channels sharing between operators. Assess inter BSs channels sharing trunking gain in a simple scenario. Design of an extended dynamic channel allocation (DCA) for inter BSs: application to 802.16h. 4.2 AMC: 11n LQM/CQI: mutual information/exp-ESM based metrics 7dB shift with respect to ergodic capacity limit with linear receiver and punctured convolutional codes 4.3 Relay: benchmark of cooperative vs. non cooperative with classical schemes (decode/amplify/compress&forward) based on capacity analysis with coverage assessments 4.3 Cooperative MU-MIMO: cooperative BS in SFR (spectrum mutualization) deployment to boost cell edge capactity, clusturing BS/MS strategies, start opportunistic beamforming