Isotopic distribution of fission fragments in multi-nucleon transfer reactions in inverse kinematics with VAMOS F. Rejmund, M. Caamaño, X. Derkx, O. Delaune,

Slides:



Advertisements
Présentations similaires
CoRoT S.C. - 24/09/07 - S.Chaintreuil Production N0/N1/N2 Status of current software Proposed evolutions foreplanned production.
Advertisements

Objectif Trouver les facteurs dun nombre. Objective Find the factors of a number.
Methods in non perturbative QCD ECOLE PREDOCTORALE REGIONALE DE PHYSIQUE SUBATOMIQUE Annecy, septembre 2009 Non-perturbatives methods (brief.
M. SAILLOUR Lycée Notre Dame du Kreisker St Pol de Léon
1/29 Le modèle de l ’atome Dernière mise à jour: Le 24 Septembre 2008.
© 2009 IBM Corporation IBM Institute for Business Value Le Nouveau Visage du DSI Étude IBM Global Chief Information Officer Study.
Time with minutes French II Le 30 Octobre.
Formal/Theory Phenomenology/Ex periments chaos break-up, giant-resonances, fusion interdisciplinarity (clusters, bose) mean-field (as a general theory)
des formes nucléaires différentes dans les isotopes de plomb
1 Découverte des Outils SI de Cadence Ecole dElectronique Numérique IN2P3 Roscoff 2006 Découverte des Outils dAnalyse dIntégrité du Signal de Cadence ®
1/29 Le modèle de l ’atome.
Des atomes aux ions.
XXIV ème Journées Thématiques8 Octobre 2007, IPN Orsay Mesure des Distributions Généralisées de Partons DESY – JLab - CERN (i) Pourquoi ? (ii) Comment.
Lénergie des étoiles Problématique Comprendre lévolution des étoiles grâce à létude des réactions de fusion nucléaire et de lénergie libérée par celles-ci.
Révision (p. 130, texte) Nombres (1-100).
D.Jérome, Orsay avec les contributions de Y.Piskunov,
Reading an analog clock
Français I Leçon 2B Une semaine au lycée Au Debut #7 (for the dates of November 5 and 6) Please Translate the Following: 1. I love the math course. (Adorer.
Institut dAstronomie et de Géophysique G. Lemaître Chemin du Cyclotron, Louvain-la-Neuve UNCERTAINTIES AND THE CLIMATE SYSTEM A. BERGER European.
DETECTORS ? = Détecteurs pour l’imagerie médicale
DETECTORS EPFL / CERN Visible and invisible light Lumière visible et invisible High energetic: Violet is the highest energetic light our eye can see. UV.
La caféine expériences. Les tests de réaction Vous allez travailler en groupes de deux Vous allez tester différentes expériences de réaction, avant et.
Time alignment of the ECAL and HCAL at LHCb.
Modélisation des Réactions Photonucléaires et Application à la Transmutation des Déchets à Vie Longue M.-L. GIACRI-MAUBORGNE, D. RIDIKAS, J.-C. DAVID DSM/DAPNIA/SPhN,
Cliquez et modifiez le titre Cliquez pour modifier les styles du texte du masque Deuxième niveau Troisième niveau Quatrième niveau Cinquième niveau 1 Cliquez.
Quelle heure est-il? What time is it?.
Influence of standards implementation on students motivation in the French classroom Innsbruck, Sept. 17th, 2011 Dr. Mareschal Michel, BG/BRG Purkersdorf.
How to solve biological problems with math Mars 2012.
Interrogation active de déchets nucléaires
Proposition for a new policy for MAPMT Gain Control Sylvie Dagoret-Campagne LAL EUSO-BALLOON 8th Progress meeting1.
Calval for land ice Part I D. Blumstein and F. Remy -Scientific objectives, requirements -- density of data depending on tracking mode - comparison with.
SUR DEUX PROBLEMES THERMOMECANIQUES COMPLEXES: -1. Distorsion dun flasque de turboréacteur obtenu par soudage -2. Propagation de fissure de fatigue en.
Laboratoire de Bioinformatique des Génomes et des Réseaux Université Libre de Bruxelles, Belgique Introduction Statistics.
Structure nucléaire : Acquis et défis
INTERACTION DES RAYONNEMENTS AVEC LA MATIERE
Une petite lettre à Père Noël…. A. Blondel, G. Prior, S. Borghi,R.Sandström, E.Gschwendtner, A. Cervera, P. Bene, J.-P. Richeux, S. Gilardoni.
10/12/2004 SC-RP-SL EDMS nº Radiation Survey of SPS N. Conan, I. Brunner D. Forkel-Wirth (TIS-RP-SL) 10 December 2004.
DETECTORS The AX-PET Detector – Le Détecteur AX-PET AXPET collaboration: CERN, ETH Zurich (CH) - INFN Bari, INFN Cagliari (IT) - IFIC and University of.
REUNION DE GROUPE CMS-Saclay 30/05/2002 J.Rander.
Nucléosynthèse des éléments
T°CT°C et Salinité. Figure 5.7 Upper: Zonal averages of heat transfer to the ocean by insolation QSW, and loss by longwave radiation QLW, sensible heat.
LA RADIOACTIVITE LE NOYAU ATOMIQUE
Passage entre quaternions et matrice des cosinus directeurs Transition from Quaternions to Direction Cosine Matrices.
Photodissociation de CH 3 Br. Avant spin-orbite : états de CH 3 Br CH 3 Br a1a1 a1*a1* ee Etat fondamental 1 A 1 CH 3 Br a1a1 a1*a1* ee Etat 1 E CH 3.
Marketing électronique Cours 5 La personnalisation.
A comparison of airborne in-situ cloud microphysical measurements with ground C and X band radar observations in African squall lines E. Drigeard 1, E.
TAX & LAW M EMBRE DU R ÉSEAU E RNST & Y OUNG 25 March 2008 HEC International Business Seminar : Key Factors and Business Location Case Study Tuesday 25.
Donnez l’heure “Time”… it’s a ticking!.
Marie-Laure GIACRI-MAUBORGNE CEA Saclay, DSM/DAPNIA/SPhN
Sections efficaces neutroniques via la méthode de substitution
Différencier: NOMBRE PREMIER vs. NOMBRE COMPOSÉ
Ch 12: Classification périodique des éléments
Energie Nucléaire pour le Futur – Physique et Chimie
Z SILICON DRIFT DETECTOR IN ALICE When a particle crosses the thickness of SDD electrons are released. They drift under the effect of an applied electric.
Partial melting 3. Migmatites and melt extraction.
Quelle heure est-il? What time is it ?.
Owned and operated as a joint venture by a consortium of Canadian universities via a contribution through the National Research Council Canada Propriété.
Unbound states near the proton emission threshold. The case of 16 F. I. Ştefan (1), F. de Oliveira Santos (2) (1) IPN Orsay (2) GANIL.
Orbitales “s” Figure:
The Solar Orbiter A high-resolution mission to the Sun and inner heliosphere.
Spectrométrie de vibration (introduction)
Ministère de l’Éducation, du Loisir et du Sport Responsables des programmes FLS et ELA: Diane Alain et Michele Luchs Animateurs: Diane Alain et Michael.
Information Theory and Radar Waveform Design Mark R. bell September 1993 Sofia FENNI.
Réunion du 17/12/03 Avancement du projet photofission.
Deux années de fonctionnement de
Modélisation des Réactions Photonucléaires et Application à la Transmutation des Déchets à Vie Longue M.-L. GIACRI-MAUBORGNE, D. RIDIKAS, J.-C. DAVID DSM/DAPNIA/SPhN,
Charlotte AMOUROUX 1 Mesures des rendements de fission de l’Am242 auprès du Spectromètre Lohengrin A. Bidaud 2, A.Blanc 3, N. Capellan 2, S. Chabod 2,
Modification de la structure en couche des noyaux riches en neutrons JRJC 2007 Présentation Alexis Ramus Plan: I- Structure des noyaux et propriétés particulières.
Groupe Structure Nucléaire
Transcription de la présentation:

Isotopic distribution of fission fragments in multi-nucleon transfer reactions in inverse kinematics with VAMOS F. Rejmund, M. Caamaño, X. Derkx, O. Delaune, C. Golabek, T. Roger, A. Navin, M. Rejmund, C. Schmitt, A. Shrivastava GANIL, France G. Barreau, B. Jurado CENBG, France K.-H. Schmidt GSI, Germany B. Fernandez Liverpool Univ., UK D. Doré, S. Panebianco SPhN, France J. Benlliure, E. Casarejos, USC, Spain L. Audouin, C.-O. Bacri, IPNO, France L. Gaudefroy, J. Taieb CEA DIF, France Ministère De l’Enseignement et de la Recherche 2 actions 2 ans post-doc 9 mois post-doc 1/2 thèse 1 thèse flêchée

Principle of the experiment Multi-nucleon transfer induced fission: systematic of fissioning systems Inverse kinematics: complete distribution of the fission fragments Spectrometer: isotopic identification of the fission fragments 238U + 12C @ 6.1 MeV/u transfer recoil glab~30° fissioning system U beam heavy fission fragment light fission fragment C target transfer - fission ~ 100 mbarn Angle de grazing ~35° fusion - fission ~ 1000 mbarn transfer • U, Np, Pu, Am, Cm • different E* fission • A: 90 - 150 • Z: 30 - 60 • q: 30 - 45 • E: 2 - 10 MeV/u D.C. Biswas et al. PRC 56 (1997) 1926 inverse kinematics - restricted angular distribution<25°

• β, γ •KE •Z •M •M/q Experimental set-up at VAMOS • Path • Bρ acceptance: • 14 deg Θ • ~ 3 deg Φ • 10 % Bρ ionization chamber 21 Si detectors drift chamber SeD drift chamber Eres at 20 deg dE X,Y ToF X,Y reconstruction • Path • Bρ • Θlab, Φlab VAMOS spectrometer at GANIL. very large acceptance of ~14 deg, and 10% in momentum. be rotated in a specific angular region. description VAMOS rotated 20 deg to allow the detection either of the light or the heavy fragment. whole fragment momentum distribution. different settings scan this region of the fission kinematics. M. Rejmund • β, γ 20 deg Aside E, dE, recoil angle SPIDER •KE •Z •M •M/q EXOGAM 238U beam

Identification of the fissioning system with SPIDER 65 µm Si dE 1 mm Si E target-like recoil ∆Θ ~ 1deg ∆E* ~ 2 MeV Wide systematic of actinides High population of the 2p channel No isotopic identification The reconstruction of the events split between the transfer reaction and the fission two annular silicon detectors measure the energy loss and total energy as close to each other as it was possible allowed the fission fragments to pass through their inner hole reconstruction of the binary transfer reaction deduced the fissioning system and E* figure Different channels can be estimated from the Qreac 238U (inelastic) and few % 237U (1n) 239Np (1p) and few % of 240Np (1p1n) ~ 70% of 240Pu (2p) and ~ 30% of 241Pu (2p1n) ~ 60% 243Am (3p2n) and ~ 40% of 244Am (3p3n) Eje Rec Q(MeV) (mb) 13C 237U -1.2 23 11B 239Np -10 25 10B 240Np -17 0.5 10Be 240Pu -15 10 9Be 241Pu -17 5 6Li 244Am -19 3

fission after n emission Fission probability 2nd fission : fission after n emission (*) 238U(α,α’)f Burke et al., Phys. Rev. C 73, 054604 (*) ENDF Below fission barrier ! ! ! Preliminary results ! ! ! 1st chance 2nd chance

Fragments range from Z ≈ 30 to Z ≈ 60 in an energy range of 600 MeV Identification of fission fragments: Z dE ∝ (qeff)2/β2 f(β) qeff ∝ βZ^1/3 + qshift We can have a clearer idea with these figures. As we saw before, the fragment Z is obtained with the measured E and dE. Here we see the relation between both, and how clear the different lines, corresponding to different Z appear. At low energies we can observe the effect of the Bragg peak, and the signal of particles that stop before reaching the last detector. A dedicated formula can be found to deduced Z with a precision enough to identified charges from 36 to 59. ∆Z/Z ≈ 1.5 ·10-2 Fragments range from Z ≈ 30 to Z ≈ 60 in an energy range of 600 MeV

Fragment distribution from A ≈ 90 à A ≈ 150 Isotopic resolution of fission fragments with VAMOS: A, A/q A = E/(γ-1) A/q = Bρ/(βγ) Here we see the mass versus mass over charge calculated as we saw previously. The blops correspond to different masses and different charge states. Each line correspond to a fixed charge state, so if we select one of this lines, we project on M/Q and multiply by the Q as integer, we obtained a mass identification with such accuracy between mass 90 to 140. The Z and mass identification revealed more than 300 fission fragments detected in VAMOS. Fragment distribution from A ≈ 90 à A ≈ 150 ∆A/A ≈ 0.6·10-2

Identification non ambigue en A, Q et Z Calibration of the identification with EXOGAM EXOGAM Z=44 Ru M=108 108Ru Identification non ambigue en A, Q et Z

Velocity of fission fragments

Fusion-inudced and transfer-induced fission E*~ 45 MeV Minor shell effect E*~ few MeV Shell effects dominants

Isotopic yields for different transfer channel Isotopic identification (mass and charge) and kinetic energy of fission fragments over the entire fragment production is done for the first time.

Perspectives  2010-2011: Repeat the experiment  identification isotopique des actinides  neutrons en coïncidence – SPhN  Longer term: 1. Enlarge stematic  other targets (more complex processes)  Other beams Th beam  Radioactive actinide beams produced in SPIRAL2 target, HIE Isolde 2. SOFIA@GSI, FELISE @ FAIR This is so far the status of the analysis. - The isotopic identification and kinematics reconstruction will be done in Spider to finish with the complete characterizatio of the fissioning system - In Vamos we will perform the normalization of the data ensamble to calculate systematic fission cross sections for the different systems. But what is already very important: We already proved for the first time that the whole identification of fission fragments, this is mass and charge, along with their energy and angular distribution is experimentally possible. And it is done.

HiE ISOLDE: an opportunity for fissionists 10 MeV/u actinide beams Already available: 200-228Rn, 10^3-10^8 pps 203-230Fr, 10^5-10^9 pps 208-230Ra 10^4-10^8 pps Possibility to extend to other actinides (Th,U,…) Simple set-up to measure precisely element yields as a function of excitation energy IC,E,ToF D Ac p telescope

Additional diapositives

Single particle and vibrational states in 133Sn A. Navin, M Single particle and vibrational states in 133Sn A. Navin, M. Rejmund et al.,

RDDS lifetime measurement after fusion fission A. Goergen et al., 7 x 90° 4 x 135° focus on nuclei “in the valley” near Z  46 (where data is scarce) obtain lifetimes in >50 isotopes cover a wide range of lifetimes 134Te 18° Q 12C Q 238U, 6.15 MeV/u v2 D v1 116Pd Mg nuclear shapes in the transitional region are very complex transition from deformed (Zr) to spherical (Sn) transition from prolate to oblate along isotopic chain triaxial shapes: rigid or gamma soft ? sensitive test for configuration mixing calculations suitable for approximations, e.g. E(5), IBM B(E2) values are key observables 62Fe RDDS spectra @VAMOS after multi-nucleon transfer in 238U+64Ni obtain consistent data over wide range of isotopes and lifetimes in one experiment extend lifetime data to: higer spin non-yrast states (gamma bands !) more neutron-rich isotopes odd-A nuclei: absolute B(M1) and B(E2) Cologne Plunger at VAMOS (E553)

Distributions de masse expérimentales Mass distribution n Fission: phénomène macroscopique Distribution des fragments fortement influencée par les effets de couche Stabilisation des fragments lourds par les effets de couche dans les nombres de neutron PF1 E,ToF =>M dM/M ~2 A~140

Description de la distribution des fragments de fission Goutte liquide : Fission symmétrique en fragments également déformés Effets de couches: Minima des courbes de potentiel sont modifiés Deformed shell Spherical shell Shell gap à N=86,88,92 ?? Toujours controversé! Taux de fragments de fission impossibles à prédire (AIEA a abandonné l’évaluation des Y(Z,A)

Distributions isotopiques (Z,A) expérimentales Spectromètre (Lohengrin, ILL) Mesure précise de A Mesure de Z avec une chambre à ionisation -Energie cinétique des fragments très basse =>méthode limitée aux fragments légers (pas d’information sur les effets de couche dans les fragments lourds) Spectroscopie  Rapports de branchement, isomères inconnus… Distribution isotopique complète difficile à mesurer Conclusions sur le rôle des neutrons restent incomplètes 238U(n,F) EXFOR Data tables

Cinématique inverse: Fission électromagnétique de faisceaux secondaires distribution E* <E*> ~12 MeV pour tous les pré-actinides K.-H. Schmidt et al., NPA665(2000)221

Cinématique inverse : distribution en Z complète Z distribution TKE distribution Z, N moyen 233U Standard I : Z ~ 52.5 Standard II : Z ~ 55 232Pa AH=ZH+NH ZH/NH=ZC/Ac 228Pa 229Th Charge constante moyenne: Shell gap mouvant ? Influence d’un nombre magique en protons ? Contradiction avec la compréhension générale de la distribution des fragments de fission So what can we learn from this observables? The charge and TKE proved to be very useful. e.m. induced-fission at GSI in inverse kinematics. we will come to this later. three different modes of fission: two assymetric and one symmetric mode. influence of particular neutron and proton shells. recent analisys doubts about this interpretation, importance to the role of the protons, than to the mass. 226Th 220Th Besoin de données en Z,A ! C. Böckstiegel et al. NPA 802 (2008) 12

Multi-nucleon transfer reaction High resolution of the fissioning system Large range of transfer Channels 238U+12C Eje Rec Q(MeV) (mb) 13C 237U -1.2 23 14C 236U 1.8 8 11B 239Np -10 25 12B 238Np -13 5 13B 237Np -14 0.8 10Be 240Pu -15 10 9Be 241Pu -17 5 8Be 242Pu -12 5 11Be 239Pu -21 0.8 7Li 243Am -26 0.5 6Li 244Am -19 3 4He 246Cm -17 3 6He 244Cm -24 0.5 232Th(12C,8Be) 236U 234U(t,pf) 235U(n,f) 236U(12C,8Be) 240Pu 238Pu(t,pf) 239U(n,f) Cheifetz et al,,1981

Transfer-induced fission reactions: wide range of fissioning systems Neutron-rich actinides : 238U beam, 12C Target Energy range 0-40 MeV

Even-odd staggering in odd-Z nuclei Zero staggering at symmetry: Unpaired nucleon chooses both fragments with equal probability Negative staggering at asymmetry: unpaired nucleon chooses the heaviest fragment S. Steinhaüser, Nucl. Phys. A 634(1998)89 Evidence for the influence of the fission-fragment phase space

Seeking for information.. We propose to use multi-nucleon transfer induced fission in inverse kinematics in order to Identify isotopic fission yields in complete fragment distribution Define the fissioning system in excitation energy, mass, charge Over a broad range of neutron-rich actinides Study the structure effects as a function of excitation energy and fissioning nucleus These data would complement GSI data Important results on shell effects and pairing effects are expected !!

Advantage of inverse kinematics High radioactivity : the production of samples for irradiation is difficult (=>systematics in direct kinematics is limited) Combined with a spectrometer isotopic resolution of the full isotopic distribution (light and heavy fragments) in-flight measure of the isotopic distribution (before beta decay) Using transfer reaction to induce fission precise knowledge of the excitation energy

It is not a question of Q value Q=M(F1)+M(F2)-M(CN) Statistical consideration: P(Z1,Z2)  (Z1)(Z2) E (Ze)= (Zo)  Ze Zo Ze Dependence with E* : e-o effect disappears very fast when pairing is still present in binding energy (Ecrit>11MeV)

if the nucleus would be a simple liquid drop Fission process: if the nucleus would be a simple liquid drop Liquid drop model: nucleus described as a drop of charged liquid E = Ev + ES + Ecb + Esym = - A + r02A2/3(1+2) + Z2/(r0A1/3(1+)) + (N-Z)2/A Bohr and Wheeler 1939 Fission barriers at 10% of the Evaluated up-to-date values J.-F. Berger, Ecole Joliot Curie 2006

Transfer-induced fission in inverse kinematics@GANIL recoil 238U 12C heavy FF light FF FF

Experimental isotopic distribution (Z,A) Spectrometer (Lohengrin, ILL) Precise measure of A - Ionisation Chamber ∆E=Z2/v2 -low kinetic energy of fission fragments =>limited to light fragments (no information on shell effects in heavy fragments) Element yield ZH=ZCN-ZL=54 Average proton number constant AH=ZH+NH=140 Average mass constant Theory Influence of neutron number =>Influence of moving neutron shell gap? =>Existence of proton shell gap? J.P. Bocquet, R. Brissot Nucl. Phys. A

Fluctuations paire-impaires dans les fragments de fission: une observable de la dissipation Effet pair-impair global z = Yze- Yzo/(Yze+Yzo) z =40% J.P. Bocquet, R. Brissot Nucl. Phys. A

Explication qualtitative des effets pair-imapirs Fission de noyaux pair: pas de fragment impair sans dissipation MeV Pairing gap 229Th+n 5 Eintr +Ecoll ? saddle scission 23090Th Effet pair-impair : une conséquence de la dissipation dans la descente -25 L’amplitude des effets pair-impairs reflète la probabilité qu’aucune paire soit brisée à la scission

Les effets pair-impairs dépendent de la fissilité du système Global even-odd effect z = Yze- Yzo Comme la répulsion Coulombienne au sein du noyau augmente, la forme au point selle devient de plus en plus compacte Saddle Th Saddle Cm Z2/ A1/3 La descente du point selle au point de scission augmente, comme Ediss, avec la fissilité

Les effets pair-impair dépendent de la symétrie Effets pair-imapirs locaux: déviation d’une distribution Gaussienne Bilan energétique: Q = TKE + TXE TXE = Q - TKE = Edef(Z1) + Edef(Z2) + Eintr Notions de: Fission froide asymétrique, <=>déformation extrême Fission symétrique chaude Pourtant associée à de grandes déformations (modèle de la goutte liquide) Effets pair-impairs non mesurés à la symétrie

Systématique sur les effets pair-impair S. Steinhaüser, PhD Thesis, TU Darmstadt, 1998 Effets pair-impairs constants pour les distributions symétriques Pourtant énergie d’excitation similaire, et fissilité basse =>Effet de l’asymétrie ?

Systématique sur l’effet pair-imapirs local  Yields Z Pour la première fois l’effet pair-impair est observé sur la distribution complète en Z, sur une large systématique de systèmes fissionants Symmetry: Z = 0.5 ZCN Asymmetry: Z = 54

Effets pair-impair à la symétrie et à l’asymétrie Fission e-m en cinématique inverse Accès aux effets pair-impair à la symétrie pour la première fois Effet pair-impair constant à la symétrie forte influence de l’asymétrie sur l’amplitude de l’effet pair-impair p global p local asymmetry p local reachable sym Fission induite par n en cinématique directe -chute du  est provoquée par la chute de  local à l’asymétrie -chute de  avec la fissilité correspond à une perte progressive de l’asymétrie quand le noyau fissionant devient plus lourd F. Rejmund, Seminar on Fission, Corsendonk 2007, Wagemans M. Caamano, Proc. Int. Conf. Fission and Fission Fragment Spectroscopy, Sanibel, Florida, 2008

La fission : modèle de la goutte liquide saddle point energy E* Bf Q scission point deformation brief description of the fission process most extreme scenarios: deformed, heated, and torn appart. evolution through deformation nucleus with a certain E* deform passes over the fission barrier. more and more deformed, energetically more favourable energy is used in collective and intrinsic degrees of freedom, friction and dissipation nucleons are continuously rearranged in two groups, guided by their nuclar structure nuclei are separated with a certain amount of energy, mainly from Coulomb repulsion. experimental: access mainly to the first and last stage Quantities as the fragment mass, charge and the TKE (and also evporated particles) what happened in between. A1,Z1 A2,Z2 TKE, evaporation Afiss, Zfiss,E* E = EV + ES + ECb + Esym = - aA + br02A2/3(1+2) + cZ2/(r0A1/3(1+)) + d(N-Z)2/A

Influence de la structure en couche des nucléons L’état fondamental n’est pas sphérique (si couche in complète) Second minimum dans la PES à grande déformation(fission isomers) Fission asymétrique es favorisée

Distribution isotopique avec VAMOS : Z dE ∝ (qeff)2/β2 f(β) qeff ∝ βZ^1/3 + qshift We can have a clearer idea with these figures. As we saw before, the fragment Z is obtained with the measured E and dE. Here we see the relation between both, and how clear the different lines, corresponding to different Z appear. At low energies we can observe the effect of the Bragg peak, and the signal of particles that stop before reaching the last detector. A dedicated formula can be found to deduced Z with a precision enough to identified charges from 36 to 59. ∆Z/Z ≈ 1.5 ·10-2 fragments identifiés de Z ≈ 36 à Z ≈ 60 dans une gamme d’énergie de 600 MeV

Faisceaux secondaires: grande systématique K.-H. Schmidt et al., NPA665(2000)221

Description de la distribution des fragments de fission La théorie prédit -une barrière double et des isomères de fission -une fission asymétrique Standard I (N=82) et II (N~90) (asymétrie) Standard Superlong (symetrie) Une description précise manque car: -description complexe des paramètres de déformation -interaction nucléon nucléon à déformation extrême inconnue (shell gaps) Wilkins et al. PRC 14 (1976) 1832

identification isotopique (masse et charge) et mesure de l’énergie 238U+12C fission induite par transfert: perspectives -distributions en masse, charge et energie des fragments de fission en fonction of E* Systématique des sections efficaces de fission du Pa au Cm Identification isotopique dépend d’une stabilisation du signal fusion-fission transfer-fission This is so far the status of the analysis. - The isotopic identification and kinematics reconstruction will be done in Spider to finish with the complete characterizatio of the fissioning system - In Vamos we will perform the normalization of the data ensamble to calculate systematic fission cross sections for the different systems. But what is already very important: We already proved for the first time that the whole identification of fission fragments, this is mass and charge, along with their energy and angular distribution is experimentally possible. And it is done. identification isotopique (masse et charge) et mesure de l’énergie Sur la production entière des fragments est faite pour la première fois