Protéines fonctionnelles

Slides:



Advertisements
Présentations similaires
La synthèse des protéines
Advertisements

Stabilité et Variabilité des génomes et Evolution
Du gène à la protéine A. Les molécules
C- Synthèse des ARN= la transcription
La synthèse des protéines
Traduction de l’information génétique
Protéine fonctionnelle
Transcription de l’ADN
Mécanisme de la traduction
Biosynthèse des macromolécules
Qu’ont en commun… ? Les modifications génétiques La fibrose kystique
ADN.
Synthèse des protéinés
LA SYNTHÈSE DES PROTÉINES
La synthèse des protéines
LES BASES MOLÉCULAIRES DE L’HÉRÉDITÉ DU GÈNE À LA PROTÉINE
Présenté par: Dr TAIBI Faiza
LA TRANSCRIPTION DE L’ADN CHEZ LES PROCARYOTES
Synthèse des protéines
Le code génétique.
Synthèse de protéines (et d’ARN)
Cours de physiologie cellulaire Présenté par: Dr TAIBI Faiza
Le ribosome.
La transcription.
LA SYNTHÈSE DES PROTÉINES
La synthèse des protéines
L’arbre du vivant.
L'information génétique
Cours des Acides Nucléiques
LA SYNTHÈSE DES PROTÉINES
Les acides nucléiques.
LA REGULATION DE L’EXPRESSION DES GENES
Chapitre 7.3 Réplication de l’ADN
Biologie Cellulaire 1. Les membranes 2. La surface cellulaire
Génétique moléculaire
CHMI 2227F Biochimie I Expression des gènes
Le Code Génétique 1952 : Dounce Premier concept vrai
Figure 65 : aminoacyl-ARNt et fidélité de la traduction
Université Hassan II AIN CHOCK Faculté de Médecine et de Pharmacie Casablanca - Cours de Biologie - Pr. Tahiri Jouti N. Année Universitaire
La synthèse des protéines
La traduction.
4.4 – Synthèse des protéines
Ordre des chapitres : 1 – 3 – 2 – 4 1.
Ribosomes dans une bactérie Miller (1970) : Transcription-Traduction d’un gène procaryote ADN Gène Polysomes mARN.
Plan du cours : première partie
CHMI 2227F Biochimie I Expression des gènes
Quand la génétique s'en mêle.
Par: Laura Chiasson et Stephanie Alcock
La traduction La traduction de l’ARNm permet la synthèse cytoplasmique de chaînes polypeptidiques. La traduction nécessite un code : le code génétique.
A B Synthèse de protéines dans le cytosol
Le code génétique I- Définition: ensemble de codons qui signifient un acide aminé ou une information génétique. II- Nombre de codons: 43 = 64 codons -61.
Révision chapitre 8 Page
4.6 – La synthèse des protéines
Réticulum endoplasmique rugueux
Le code génétique et Traduction
Régulation de l’expression génétique: la transcription
Pr B. AITABDELKADER CPMC
Régulation de l’expression génétique: la traduction
Bonjour, je suis ton guide, Hoppy le lapin! Par: Kayla, Troy et Megan.
Le Code Génétique 1952 : Dounce Premier concept vrai
ULBI 101 Biologie Cellulaire L1 Le Système Membranaire Interne.
L’EXPRESSION DU PROGRAMME GENETIQUE
Chapitre 2 2ème partie Transcription et traduction titre.
De l’ADN à la Protéine : Transcription et Traduction
RER (p59) Les ARNm traduits au niveau du RER fournissent les protéines du SMI, les protéines membranaires et sécrétées. C’est l’ARNm qui détermine la destinée.
3 ARN Polymérases, 3 étapes (P53) RNAPol I: ARNr (sauf 5S); RNApol II: ARNt; RNApol III: ARNm +5S Initiation Elongation Terminaison.
La traduction L’initiation L’élongation La terminaison.
Mécanisme de la traduction
Titre Les protéines.
La traduction.
Transcription de la présentation:

MÉCANISMES MOLÉCULAIRES DE L ’EXPRESSION DES GÉNES : LA TRADUCTION OU BIOSYNTHÈSE DES PROTÉINES

Protéines fonctionnelles I-Introduction - définition gène 5 ’ A B C 3 ’ transcription rRNA tRNA mRNA Traduction Protéine de structure (collagène) AA1-AA2-AA3…AAn Protéines fonctionnelles Enzymes (métabolisme) Protéine signal (hormone) Traduction = processus de biosynthèse des protéines 1 : transfert de l ’information 2 : attachement des acides aminés Problème : ARN messager = code à 4 lettres (AUCG) Protéines = codes à 20 lettres (20 acides aminé différents) Code génétique II- Code génétique 4 bases 20 AA différents ? 1ère possibilité : code à 1 lettre 41 = 4 2ème possibilité : code à 2 lettres 42 = 16 3ème possibilité : code à 3 lettres 43 = 64

Triplet = codon 5 ’ AUC CGA GUC 3 ’ mRNA AA1 - AA2 - AA3 protéine AUC : 3 nucléotides (AMP, UMP, CTP) 64 codons ≠ Caractéristiques du code génétique Code universelle Code non chevauchant AA1 - AA2 - AA3 - AA4 A B C D E F G H I J K L AA1 AA2 AA3 Pas de ponctuation Code dégénéré : 64 codons et 20 AA ≠ Plusieurs codons pour un même AA Déchiffrage du code génétique (Khorana et Nirenberg: prix Nobel 1968) Stratégies de déchiffrage : UUUUUUUUU... + Système acellulaire Phe-Phe-Phe-.. UUU = Phe. AAAAAAAAA... + Système acellulaire  Lys-Lys-Lys-.. AAA= Lys

U C A G 1er nucléotide (en 5 ’) 2ème nucléotide 3ème nucléotide Phe Ser Tyr Cys Leu Ser Stop Stop Leu Ser Stop Trp U C A G U Leu Pro His Arg Leu Pro His Arg Leu Pro Gln Arg Leu Pro Gln Arg U C A G C Ile Thr Asn Ser Ile Thr Lys Arg Met Thr Lys Arg U C A G A Val Ala Asp Gly Val Ala Glu Gly U C A G G UAA, UAG, UGA = codons stop (codon non sens) AUG = codon initiateur dégénérescence ++ (3ème base)

N III- Mécanismes biochimiques de la traduction 1- Lieu de la biosynthèse des protéines : ribosomes N Ribosomes libres - protéines du cytoplasme - protéines du cytosquelette Ribosomes liés au RE - protéines de sécrétion (hormones, matrice extracellulaire) tRNA (adaptateur) codon AA mRNA 2- Éléments nécessaires Acides aminés H2O H2N-CH-COOH H2N-CH-COOH H2N-CH-CO- NH-CH-COOH R1 R2 R1 R2 AA1 AA2 peptide

61 codons (20 AA) : 32 tRNA (Wobble) ARN de transfert : tRNA Acide aminé (Phe) Extrémité 3 ’ Extrémité 5 ’ Bras T Bras D Feuille de trèfle anticodon Phe ACC 3 ’ 5 ’ Trp ACC 3 ’ 5 ’ Acide aminé ACC 3 ’ 5 ’ A A G A C C X Y Z 5 ’ 3 ’ U U C U G G mRNA 3 ’ 3 ’ mRNA 5 ’ 5 ’ 5 ’ TTC 3 ’ (sens, codant) 3 ’ AAG 5 ’ antisens, non codant) 5 ’ TGG 3 ’ 3 ’ ACC 5 ’ DNA DNA 61 codons (20 AA) : 32 tRNA (Wobble)

Établissement de la liaison t-RNA avec un acide aminé Mg 2+ Acide aminé + tRNA + ATP aminoacyl-tRNA + AMP + PPi aminoacyl-tRNA synthétase 1 : acide aminé + ATP aminoacyl-AMP + PPi + + PPi 2 : aminoacyl-AMP + t RNA aminoacyl-tRNA + AMP Extrémité 3 ’ du tRNA + AMP 5 ’ aminoacyl-AMP 5 ’ tRNA aminoacyl-tRNA

Facteurs d ’initiation 3- Les différentes étapes de la traduction (chez les procaryotes) Initiation, élongation et terminaison : N terminale C terminale + AA2 + AA3 NH2-AA1-COOH NH2-AA1-AA2-COOH NH2-AA1-AA2-AA3-COOH Débute par la formylmethionine (fMet) a - Formation du complexe d ’initiation Site peptidyl P Site Aminoacyl A 5 ’ fMet fMet mRNA fMet-tRNA Sous unité 50S Sous unité 30S A U G Facteurs d ’initiation A U G GTP 5’ 3’ mRNA complexe d ’initiation 30 S complexe d ’initiation 70 S

Libération de la chaîne 5’ 3’ Dissociation ribosome b- Phase d ’élongation Site P libre Facteur d  ’élongation fMet AA1 fMet-AA1 AA1-tRNA Peptidyl transférase GTP GDP + Pi A U G tRNA A U G 5’ 3’ 5’ 3’ 1 2 1 2 fMet-AA1 AA2 translocation c - Terminaison Codon stop : UAA, UAG, UGA GTP GDP + Pi A U G Libération de la chaîne 5’ 3’ Dissociation ribosome 1 2 3

Bilan énergétique de la traduction Aminoacyl-tRNA : 2 liaisons riches en énergie 2 GTP 2 GDP + 2Pi (élongation) 4 liasons riches en énergie / liaison peptidique Comparaison procaryotes et eucaryotes ( fmet ≠ met) noyau DNA transcrit primaire cytoplasme 5 ’ 3 ’ mRNA mRNA mature Protéine naissante 5 ’ 3 ’ 5 ’ ribosome Procaryote Eucaryote Inhibition de la biosynthèse protéique par les antibiotiques Streptomycine : fMet-tRNA Tétracyclines : liaison à la sous-unité 30S Érythromycine : liaison à la sous-unité 50S (inhibe la translocation) Chloramphénicol : inhibe la peptidyl-transférase

IV - Adressage des protéines et modifications post-traductionnelles cytosol (ribosomes libres) Membrane plasmique protéine Ribosomes liés (RE) : séquence signal (extrémité N-terminale) = 20 AA (hydrophobes) sécrétion Réticulum endoplasmique translocation NH2 Séquence signal 3 ’ 5 ’ SRP = particule de reconnaissance du signal (cytosol + ribosome) + récepteur sur RE Dans le RE : modifications post-traductionnelles - repliement de la protéine (rôle des protéines chaperonnes) - glycosylation, hydroxylation ...