Apprentissage des mathématiques Résolution de problèmes Roland Charnay - 2009
Ce qui est dit dans le socle… … les mathématiques fournissent des outils pour agir, choisir et décider dans la vie quotidienne. Elles développent la pensée logique, les capacités d'abstraction et de vision dans le plan et dans l'espace par l'utilisation de formules, de modèles, de graphiques et de diagrammes. Il s'agit aussi de développer le raisonnement logique et le goût de la démonstration. La maîtrise des principaux éléments de mathématiques s'acquiert et s'exerce essentiellement par la résolution de problèmes, notamment à partir de situations proches de la réalité. Roland Charnay - 2009
La résolution de problèmes dans le programme La résolution de problèmes joue un rôle essentiel dans l’activité mathématique. Elle est présente dans tous les domaines et s’exerce à tous les stades des apprentissages. (programmes, 2008) Roland Charnay - 2009
Plan Etat des lieux : quelques données sur les acquis des élèves Analyse des difficultés Pistes pour l’action pédagogique Roland Charnay - 2009
Etat des lieux Quelques données Roland Charnay - 2009
Evaluation sixième Environ 1 élève sur 5 a des difficultés avec les "compétences nécessaires pour profiter pleinement des situations pédagogiques de sixième" (pour plus de 2/3 des items considérés). Deux domaines particuliers de difficultés le calcul mental : 72 % de réussite aux questions "de base" Exemples : le quart de 100 (68 %) 36 divisé par 4 (56 %) 52 divisé par 4 (37 %) la résolution de problèmes Roland Charnay - 2009
La résolution de problèmes Roland Charnay - 2009
Xavier range les 50 photos de ses dernières vacances dans un classeur. Evaluation 6e - 2003 Xavier range les 50 photos de ses dernières vacances dans un classeur. Chaque page contient 6 photos. a) Combien y a-t-il de pages complètes ? b) Combien y a-t-il de photos sur la page incomplète ? Il y a ……… pages complètes. 54 % Il y a ……… photos sur la page incomplète. 57 % Roland Charnay - 2009
Procédures possibles Problème des photos Division par 6 Division (CM1) Essais de produits par 6 Table de multiplication (CE2) Addition de 6 en 6 Addition (CE1) Schématisation des pages et des photos Dénombrement (CP) Roland Charnay - 2009
Une question ne pensent-ils pas… n’osent-ils pas… Pourquoi des élèves qui disposent de l’une ou l’autre des connaissances permettant de résoudre ce problème… ne pensent-ils pas… n’osent-ils pas… ne se croient-ils pas autorisés… … (à) les utiliser pour répondre à la question? Roland Charnay - 2009
Comparaison internationale (PISA 2003) Deux points faibles caractéristiques "Les élèves ont des connaissances, mais elles sont peu disponibles. Pour la plupart d'entre eux, si on ne leur dit pas explicitement quelles connaissances mathématiques il convient d'utiliser dans une situation donnée, ils ne la trouveront pas d'eux-mêmes, même s'ils possèdent le ou les éléments de connaissance correspondants". Manque d'autonomie : "Ils ne s'attaquent qu'aux questions qu'ils pensent pouvoir résoudre, ils ne disposent pas de stratégies pour aborder un problème qui ne leur est pas familier : essayer, expérimenter, bricoler… ne font pas partie des modes d'approche possibles". Antoine Bodin, Les mathématiques face aux évaluations, revue Repères (IREM), octobre 2006 Roland Charnay - 2009
Un exemple Un menuisier dispose de 32 m de planches et souhaite s'en servir pour faire la bordure d'une plate-bande dans un jardin. Il envisage d'utiliser un des tracés suivants pour cette bordure : Indiquez pour chacun des tracés s'il peut être réalisé avec les 32 m de planches. Roland Charnay - 2009
Analyse des difficultés Quelques pistes Roland Charnay - 2009
Schéma d’analyse sommaire Connaissances et compétences en lecture (ordre des informations, place de la question) sur le contexte sur les concepts mathématiques relatives au raisonnement en calcul Connaissances sur ce qui est attendu sur ce qui est permis sur ce qui marche souvent sur "l'accueil" des erreurs Roland Charnay - 2009
A la bonne place (éva CE2) Ecris, dans le bon ordre, chaque nombre à la place qui convient. 367 582 309 300 400 500 600 300 309 400 367 500 582 600 Roland Charnay - 2009
… pour le travail avec les élèves Quelques pistes… … pour le travail avec les élèves Roland Charnay - 2009
Apprendre ce qu’est chercher Un mot à double sens Chercher parmi les solutions expertes déjà éprouvées Chercher, bricoler une solution nouvelle, originale, personnelle, comme le chercheur Roland Charnay - 2009
Exemples au CP/CE1… Roland Charnay - 2009
Exemple au CM1 (tiré de Cap maths CM1) Combien chaque enfant a-t-il mangé de papillotes ? Alex en a mangé trois fois plus que Céline. Brice en a mangé deux de plus qu’Alex. Au total, ils en ont mangé 44. Roland Charnay - 2009
Aider à l’appropriation du problème Plusieurs supports de présentation Vécu Dessin, schéma, document Oral Ecrit Aux cycles 1 et 2, le travail sur fiche est peu favorable, dans la phase d’apprentissage Roland Charnay - 2009
Dix dans la boîte (Cap maths CP) - deux joueurs - 1, 2 ou 3 jetons dans la boîte à chaque coup. Roland Charnay - 2009
Dix dans la boîte : 3 problèmes Se souvenir de ce qui est mis dans la boîte à chaque coup Plusieurs solutions… dont les nombres Connaître le contenu de la boîte Vers l’addition Savoir s’il est possible de gagner au coup suivant Vers le complément Roland Charnay - 2009
REEL / ANTICIPATION Réel Anticipation Favorise l’appropriation de la situation et du problème Anticipation Incite à l'expérience mentale Permet la validation de la réponse ou d'une procédure Oblige à élaborer des procédures Roland Charnay - 2009
Limiter les références possibles à des indices « extérieurs » au problème. Ne pas lier systématiquement les problèmes aux apprentissages en cours Eviter les aides « de surface » Roland Charnay - 2009
Exploiter la diversité des procédures Favoriser la diversité Exploiter la diversité Aider au progrès des élèves Roland Charnay - 2009
Cinq catégories de solutions A 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 B 25 + 5 = 30 + 30 = 60 5 + 30 = 35 C 2 5 + . . 6 0 D 60 – 25 = 35 E Roland Charnay - 2009
Correction ou mise en commun ? Aboutir au corrigé, à LA solution Conséquence : « résolution » unique dont il faut s’approcher le plus possible Mise en commun Inventorier les « résolutions » Débattre de leur validité Les comparer Conséquence : la diversité est possible Roland Charnay - 2009
Trace écrite ? Pas de trace écrite cette fois-ci Une « résolution » correcte, au choix de chaque élève Un montage de différentes « résolutions » correctes Roland Charnay - 2009
Exemple : 250 passagers, 240 adultes Aider à progresser… Prise de conscience au cours de la mise en commun Mise en lien, établissement de ponts entre des « résolutions » en apparence différentes Choix des variables Exemple : 250 passagers, 240 adultes Expérience mettant en évidence l’équivalence de 2 « résolutions » (ici validation expérimentale) Roland Charnay - 2009
La culture mathématique, c’est … Des connaissances Des connaissances utilisables (donc qui ont du sens) Des connaissances cohérentes (reliées entre elles) La capacité à les utiliser pour justifier L'initiation à une pratique "mathématisante" Roland Charnay - 2009