Le nombre au cycle 2 Juvigny le 23 février 2011 et St Denis Sur Sarthon le 23 mars
Sommaire I La construction du concept de nombre en maternelle II Les groupements à la base de notre système de numération III Numération chiffrée et numération orale IV Le calcul mental, « un champ d’expérience particulièrement riche pour la construction de connaissances relatives aux nombres » V Exemples de « problèmes pour chercher » dans le domaine numérique
La construction du concept de nombre en maternelle I Quelques remarques concernant le dénombrement II Quelques points concernant la construction du concept de nombre qui semblent importants
I Quelques remarques concernant le dénombrement Remarque préalable : dénombrer c’est trouver le nombre d’éléments d’une collection quel que soit le moyen utilisé pour trouver ce nombre. 1°) Les différentes manières de dénombrer a) Dénombrement par reconnaissance immédiate des petites quantités b) Dénombrement par comptage un par un : on utilise la comptine numérique Ce qui est difficile c’est de faire comprendre que le dernier mot-nombre prononcé n'est pas un simple numéro mais représente à lui seul la quantité de tous les objets. Première remarque concernant le dénombrement par comptage : Pour réussir à dénombrer les éléments d’une collection par comptage l’enfant doit comprendre, comme on vient de le dire, que le dernier mot-nombre prononcé représente à lui seul la quantité de tous les objets. Il doit aussi, en amont : comprendre que la nature des objets à compter n’a pas d’importance comprendre qu’on peut compter les objets dans n’importe quel ordre. - savoir énumérer les éléments d’une collection c’est-à-dire savoir passer tous les éléments en revue sans en oublier et sans en désigner un deux fois. - connaître la comptine numérique - savoir associer à chaque élément de l’ensemble un mot-nombre et un seul de la comptine récitée dans l’ordre.
Deuxième remarque concernant le dénombrement par comptage : Etant donné les difficultés posées par le dénombrement par comptage, Brissiaud préconise dans son ouvrage « Premiers pas vers les maths – Les chemins de la réussite à l’école maternelle » d’autres activités à pratiquer en PS et début de MS.
Les propositions de Brissiaud consistent en un travail sur les liens entre les nombres, les décompositions : Exemple en PS : « un » « quatre » « un » « un » « et un »
Troisième remarque concernant le dénombrement par comptage : On peut procéder ainsi : Si les objets sont déplaçables : « un » « deux » « trois » « quatre » Si les objets ne sont pas déplaçables : « trois » « quatre » « un » « deux »
c) Dénombrement en utilisant des "collections-témoins organisées" (configurations spatiales diverses, configurations digitales, etc.) qui servent de repères Remarque : On ne peut pas bien concevoir la notion de nombre si on n’est pas conscient des liens qui unissent les nombres : Exemples : « 3 est plus petit que 4 » ; « 3 et 1 ça fait quatre ». « deux » « ça fait trois » « et encore un »
Remarques concernant les représentations : - Il semble souhaitable de ne pas toujours utiliser la même configuration de doigts - La présence de bandes numériques collectives ou individuelles est importante (remarque : si la file numérique commence par 1 et non par 0, on fera plus facilement le lien entre aspect ordinal et aspect cardinal du nombre) 3°) Ne pas oublier que le nombre a aussi « un aspect ordinal » : lundi est le premier jour de la semaine, mardi le deuxième, etc. Exemple d’activité : Boîte contenant un objet « Comment faire comprendre dans quelle boîte se trouve l’objet, sans montrer cette boîte »
b) L’utilisation du calendrier 17 On est le 17. 1°) Combien de jours se sont passés depuis le 14 ? 2°) La maîtresse Aline revient dans combien de jours ? 3°) Combien de jours jusqu’à l’anniversaire de Pierre ?
Autre exemple : On ajoute trois jetons. On ajoute quatre jetons. Combien y a-t-il de jetons dans la boîte ? On peut ensuite vérifier en vidant la boîte. (la réflexion précède ici la manipulation qui sert à vérifier si le résultat qu’on a trouvé est exact) Boîte opaque
Les trois fonctions du nombre: Mémoire d’une quantité Mémoire du rang Anticipation: donner le résultat d’une action sans avoir à la réaliser.
Les trois concepts: Le concept de collection: (objets unis par une propriété commune) Le concept de désignation: (remplacer un objet par un symbole) Le concept d’énumération: (pointer une et une seule fois tous les éléments d’une collection)
II Les groupements à la base de notre système de numération
II Les groupements à la base de notre système de numération Notre système de numération est basé sur les groupements (on fait des paquets de dix puis de cent puis…) mais ce qui est important c’est que l’élève comprenne l’intérêt de faire des paquets de dix (quand on a beaucoup d’objets à dénombrer, on fait des paquets et ensuite on compte ces paquets). Exemples d’exercices permettant de voir si un élève a compris ou pas l’intérêt de faire des paquets : Premier exemple : Dans la case blanche écris en chiffres combien il y a de croix. X X X X X X X X X X X X X X
Deuxième exemple : Dans la case blanche écris en chiffres combien il y a de doigts.
Troisième exemple : Dessine dans le grand cadre blanc le nombre de croix correspondant au nombre écrit sur l’étiquette. Attention, on doit tout de suite voir que c’est juste.
Pour les CP, il s’agira de construire des stratégies pour dénombrer rapidement et de manière fiable des collections de 60 à 100 objets et au CE de plusieurs centaines voire milliers d’objets. L’évolution du CP au CM2 se fait au niveau du passage de collections réelles à des collections représentées sous différentes formes : Par exemple dans ERMEL les situations « les fourmillions » (CP), « les cahiers » (CE1), « les craies » (CE2),« les trombones » (CM1) et « les tickets de cantine » (CM2) entrent dans cette catégorie. Les « fourmillions »
III. Numération chiffrée et numération orale
III Numération chiffrée et numération orale 1°) Généralités sur les changements de registre De façon générale, les concepts mathématiques sont des concepts compliqués. Pour bien les appréhender, il est nécessaire de disposer de plusieurs registres et de savoir passer de l’un à l’autre. Exemple concernant la notion de nombre : Au cycle 1 :
Au cycle 2 :
Au cycle 3 :
Remarque : Passer du registre des désignations orales au registre des écritures chiffrées nécessite de comprendre que certains mots sont traduits par des chiffres et d’autre pas et en plus qu’il faut écrire des chiffres « qu’on n’entend pas » : est traduit par le chiffre 3 mais on doit écrire aussi un 0 « qu’on n’a pas entendu » : 3 2 0 3 trois mille deux cent trois est traduit par le chiffre 3 est traduit par le chiffre 2 n’est pas traduit par un chiffre mais indique que le chiffre 3 doit être mis à une certaine place : 3 _ _ _ n’est pas traduit par un chiffre mais indique que le chiffre 2 doit être mis à une certaine place : 3 2 _ _ Remarque : notre système de numération orale est un système hybride dans lequel les noms des nombres sont composés suivant un principe additif (dix-sept) ou multiplicatif (deux-cents).
Parmi les différentes manières de représenter les nombres on peut citer la représentation « en carte à points » qui permet, en particulier de travailler les doubles et les compléments à dix.
Ensuite, on se compte et on trouve qu’on est 23. On peut faire en sorte que les élèves établissent le lien entre le 2 et le nombre de cartons pleins et entre le 3 et les trois points du dernier carton ...
Problème : Voici le tableau des présents dans une autre classe ? Combien y a-t-il d’élèves dans cette classe ?
a) Les noms des dizaines 2°) Le passage des écritures chiffrées aux désignations orales et réciproquement Une grande partie des difficultés rencontrées par les élèves sont dues aux irrégularités de notre numération orale car en français, les règles de lecture des nombres sont complexes et souffrent de nombreuses anomalies (on dit "treize" et pas "dix-trois" ; on dit "soixante-douze" et pas "septante-deux" ; on dit "cent" et "mille" mais "un million", etc.). a) Les noms des dizaines 40 se dit quarante alors que dans les langues asiatiques ont dit « quatre-dix », ce qui est beaucoup plus porteur de sens. b) Des nombres ayant des noms bizarres Stella Baruk les appellent « les cachotiers »
Remarques - on peut travailler sur les écritures chiffrées de ces nombres avant de savoir les nommer 7 8 Autrefois, certains aimaient bien faire des paquets de soixante soixante - dix - huit
quatre-vingt-quatorze 8 3 9 4 Autrefois, certains comptaient avec les doigts des mains et des pieds. quatre-vingt-trois quatre-vingt-quatorze - On peut utiliser ce qu’on entend : Pour soixante treize : 60 + 13 = 73 Pour quatre-vingt-deux : 20 + 20 + 20 + 20 + 2 = 82 Pour 93 : 20 + 20 + 20 + 20 + 13 = 93
c) Des idées tirées du tome 1 de l’ouvrage de Stella Baruk « Comptes pour petits et grands » publié aux éditions Magnard) Le fil conducteur est de s’appuyer sur ce qu’on entend. Exemples :
Par ailleurs:
d) Evaluer les élèves en distinguant différentes compétences mises en jeu dans l’apprentissage de la numération - Comprendre comment on exprime des quantités à l’aide d’écritures chiffrées (sans intervention de la numération orale)
Vidéo 2 : les abaques
- Comprendre le fonctionnement de notre système d’écritures chiffrées (sans intervention de la numération orale) (aspect algorithmique: les compteurs) ) Exemples d’exercice (à adapter au niveau) : - Ecris en chiffres le nombre qui vient juste après le nombre donné : 199 - Ecris en chiffres le nombre qui vient juste avant le nombre donné : 360 - Ecris en chiffres le nombre compris entre les deux nombres donnés : 299 301 - Complète la phrase suivante par un nombre écrit en chiffres : ………………………. se trouve entre 129 et 131
- Ecris à leur bonne place les nombres 324, 354 et 408 238 352 613 - Entoure le plus grand des deux nombres : 524 et 673 - Range du plus petit au plus grand les nombres 38, 402, 24 et 342
- Comprendre comment on exprime des quantités à l’aide de désignations orales des nombres Exemples d’exercices (à adapter au niveau) : - Lis ces écritures chiffrées : 123 238 199 2178 5674 - Ecris en chiffres les nombres que je vais te dicter…. - Comprendre le fonctionnement de notre système de désignations orales (aspect algorithmique) Exemples d’exercices (à adapter au niveau) : - Demander le nombre qui vient juste après cent-quatre-vingt-dix-neuf, le nombre qui vient juste avant cent-vingt-trois (L’enseignant et l’élève utilisent des désignations orales des nombres) - Demander à l’élève d’écrire avec des chiffres le nombre qui vient juste après cent-vingt-trois, le nombre qui vient juste avant cent-vingt-deux (L’enseignant utilise des désignations orales ; l’élève produit des écritures chiffrées)
- Demander le nombre compris entre quatre-vingt-neuf et quatre-vingt-onze (L’enseignant et l’élève utilisent des désignations orales) - Demander à l’élève d’écrire en chiffres le nombre compris entre quatre-vingt-neuf et quatre-vingt-onze (L’enseignant utilise des désignations orales et l’élève produit des écritures chiffrées) - Demander un nombre compris entre cent-vingt-deux et cent-cinquante (L’enseignant et l’élève utilisent des désignations orales) - Demander à l’élève d’écrire en chiffres un nombre compris entre cent-vingt-deux et cent-cinquante (L’enseignant utilise des désignations orales et l’élève produit des écritures chiffrées)
3°) Des situations à reprendre aux différents niveaux de la scolarité en adaptant le domaine numérique (d’après des propositions de Denis Butlen et Pascale Masselot tirées du document « le nombre au cycle 2 » récemment mis en ligne sur le site Eduscol) a) Situations d’échange pour travailler les écritures chiffrées des nombres Remarque : Pour des vidéos concernant le jeu du banquier au cycle 2, voir : http://www.uvp5.univ-paris5.fr/TFM/Videos/Videos.asp - Situations amenant à repenser les groupements par rapport aux échanges Il s’agit d’amener les élèves à lire dans l’écriture d’un nombre des informations liées aux échanges ou aux groupements qui ont été effectués. La situation de référence est par exemple le problème des timbres : les timbres sont vendus par carnets de dix timbres. Paul a besoin de 260 timbres. Combien doit-il acheter de carnets ? Corinne a besoin de 500 timbres. Combien doit-elle acheter de carnets ?
Remarques : - Comprendre que, dans 623, le chiffre des dizaines vaut 2 mais que le nombre de dizaines vaut 62 est un objectif important mais il me semble qu’il faut faire attention à ne pas aller trop vite avec des élèves en difficulté et qu’il est souhaitable de s’appuyer s’appuyer sur le matériel de numération utilisé. 6 2 3 Le chiffre 2 indique le nombre de dizaines « visibles » Mais il y a aussi 60 dizaines « cachées dans les centaines »
- Au cycle 3, il s’agira de comprendre que 1 2 4 1 , 7 8 c’est : 1 millier 2 centaines 4 dizaines 1 unité 7 dixièmes 8 centièmes mais c’est aussi, par exemple : 12 centaines 41 unités 78 centièmes b) Situations abordant le point de vue algorithmique (dans les deux systèmes de numération) Activités autour des familles de nombres comme dans la situation du « jeu du château » en CP/ CE1 (cf. les ouvrages de l’équipe ERMEL publiés par Hatier) (ouvrages)
Permet de travailler le sens des écritures chiffrées Remarque : « chef de famille » « Tableau Brissiaud » « Tableau ERMEL» 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 98 99 100 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 98 99 Permet de travailler le sens des écritures chiffrées Permet de travailler sur les désignations orales des nombres 23 c’est 2 paquets de dix et 3 unités 23 appartient à «la famille des vingt»
Vidéo 1 : le boulier
Activités autour des compteurs (avec des chiffres ou avec des mots) et des calculatrices Exemple d’activité : Un premier nombre est affiché sur l’écran de la calculatrice (par exemple 1234). Sans éteindre la calculatrice, ni effacer le nombre affiché, il s’agit d’obtenir l’affichage de 1334 en tapant le minimum de touches.
c) Situations d’exploration des règles de la numération orale et de mise en relation avec la numération de position (chiffrée) Construire un dictionnaire de nombres (CP) Au CP on peut construire un livret dédié à l’écriture des nombres. Chaque page est consacrée à un nombre. L’élève y inscrit différentes écritures ou représentations de ce nombre. Les pages vont s’enrichir progressivement. Mettre en correspondance les deux types d’écritures L’élève dispose de deux jeux de cartes. Le premier comporte des cartes sur lesquelles il y a les écritures chiffrées de nombres entiers (par exemple les n premiers nombres). Le second est un jeu de cartes avec les mots-nombres correspondant. La consigne est la suivante : Il faut remettre dans l’ordre les différents nombres. Dans la colonne de gauche tu écris les nombres du plus petit au plus grand avec des chiffres. Dans la colonne de droite tu écris avec des mots.
Simuler un « compteur manuel » permettant d’écrire les nombres avec des mots Combien de chiffres ? Combien de mots ? Un nombre étant énoncé par l’enseignant, l’élève écrit sur son ardoise le nombre de chiffres nécessaires pour l’écrire. Inversement, un nombre étant écrit au tableau avec des chiffres, l’élève doit écrire sur son ardoise le nombre de mots nécessaires. L’institutionnalisation porte sur la longueur de l’écriture d’un nombre qui ne dépend pas systématiquement de sa grandeur : le nombre « deux-cent-vingt-trois » comporte plus de mots que le nombre « trois-cents».
Remarque : pour d’autres idées d’activités, voir, par exemple les ouvrages de l’équipe ERMEL (ouvrages) On y trouve, par exemple des activités de ce type :
deux quatre six cent(s) mille vingt(s) En complément, voici un exemple faisant intervenir des nombres plus grands que ceux fréquentés au cycle 2. Quel est le plus grand nombre que l’on peut écrire avec toutes ces étiquettes ? deux quatre six cent(s) mille vingt(s) six-cent-quatre-vingt-deux-mille
4°) Les mesures de grandeurs, un point d’appui pour construire le nombre (d’après des propositions de Joannie Carole et Alain Solano–Séréna tirées du document « le nombre au cycle 2 » récemment mis en ligne sur le site Eduscol) - Les billets et les pièces sont marqués de leur valeur en euros exprimée en unités, dizaines ou centaines. Ainsi, 56 € s’exprime aisément comme : (5 × 10 €) + 6 € et 326 € comme (3 × 100 €) + (2 x 10 €) + 6 €, en référence aux billets de 100 €, de 10 € et aux pièces de 1 € . - On dit les nombres comme on dit les longueurs en mètres et en centimètres : trois mètres vingt-cinq centimètres trois-cent-vingt-cinq billes.
Propositions de Joannie Carole et Alain Solano–Séréna tirées du document « le nombre au cycle 2 » récemment mis en ligne sur le site Eduscol
5°) Exemples d’activités utilisant l’outil informatique - Exercices du site http://pepit.be (animations flash à exécuter en ligne ou à télécharger) : - Exercices concernant la numération au cycle 2 sur le site « Le Matou matheux » (à exécuter en ligne) : http://matoumatheux.ac-rennes.fr/num/entier/CP/ecrireCP.htm Exercice « Trop petit ! Trop grand ! Gagné ! » de M. Menei : http://pedagogie.ac-toulouse.fr/primaide/crtice81/outils_peda/entree_criteres/Tous_cycle.php?a=view&recid=6
IV. Le calcul mental, « un champ d’expérience particulièrement riche pour la construction de connaissances relatives aux nombres »
IV Le calcul mental, « un champ d’expérience particulièrement riche pour la construction de connaissances relatives aux nombres » (d’après des propositions de Denis Butlen et Pascale Masselot tirées du document « Le nombre au cycle 2 » récemment mis en ligne sur le site Eduscol) 1°) Activité préalable : Pour commencer, faisons nous-mêmes un peu de calcul mental
25 × 124 25 × 4 × 31 = 100 × 31 = 3100 25 × 124 = = 3100 5 × 5 × 124 = 5 × 620 = 3100
Je pense à un nombre. Je multiplie ce nombre par 6 Je pense à un nombre. Je multiplie ce nombre par 6. J’ajoute 2 au résultat. Je multiplie le résultat précédent par 3. Je trouve 132. A quel nombre ai-je pensé ? × 6 42 + 2 44 × 3 132 7 : 6 - 2 : 3
Cascade additive : 217 a+b a b 118 99 ? 54 64 35 15 39 25 10 Remarque : on peut trouver un générateur de pyramides additives et multiplicatives avec corrigés à cette adresse : http://manu.ledaine.free.fr/Pyramides/ exemple:
2°) Propositions de Denis Butlen et Pascale Masselot tirées du document « Le nombre au cycle 2 » récemment mis en ligne sur le site Eduscol Recherche de compléments Compléter à 10 : Complète 3 pour faire 10. Combien manque-t-il à 3 pour faire 10 ? Que faut-il ajouter à 3 pour faire 10 ? 3 + ? = 10 Compléter à la dizaine supérieure : 14 20 32 40 53 60 Compléter à 100 ou à la centaine supérieure : 30 100 54 100 327 400 1350 1400 Trouver le complément quand il s’agit de 10, de 100, etc. ou d’un multiple de 10, de 100, etc. : 32 42 48 78 25 325 1235 1635
Remarque : on peut aussi utiliser « les cartons Montessori » Exemple : L’enseignant dicte un nombre et l’élève doit écrire ce nombre en superposant les cartons adéquats.
V. Exemples de « problèmes pour chercher » dans le domaine numérique
V Exemples de « problèmes pour chercher » dans le domaine numérique « La résolution de problèmes joue un rôle essentiel dans l’activité mathématique. Elle est présente dans tous les domaines et s’exerce à tous les stades des apprentissages. » (IO 2008) Certains des problèmes proposés sont issus du document http://dpernoux.free.fr/ouvertsc2.doc dans lequel des sources sont citées. Problème 1 On veut fabriquer 66 € en utilisant des billets de 10 €, des billets de 5€ et des pièces de 1 €. Quelle est la solution qui utilise le moins de pièces et billets ? 10 10 10 5 1 10 10 10 Problème 2 11 12 13 21 22 23 31 32 33
Problème 3
Problème 4 Problème 5 Il y a plusieurs solutions 3 9 2 8 1 6 4
Problème 6 (assez difficile)
Problème 7 Problème 8 4 14 24 34 40 41 42 43 44 45 46 47 48 49 On a utilisé 15 fois le chiffre 4.
Il y a plusieurs solutions Problème 9 4 1 2 3 5 Il y a plusieurs solutions Problème 10 16 25 34 43 52 61 70
Problème 11 Combien de mots différents suffisent à un écolier français pour écrire les cent premiers nombres ? Un deux trois quatre cinq six sept huit neuf dix onze douze treize quatorze quinze seize vingt et trente quarante cinquante soixante cent 23 mots
Un problème « pour chercher» et un jeu plus difficiles Activité « atteindre un nombre » On dispose d’une calculatrice qui n’a que que deux touches : une touche « ajouter 9 » et une touche «enlever 6 ». On part du nombre 5. - Essayer d’atteindre 17 en utilisant la calculatrice. Exemple de solution : 5 + 9 + 9 – 6 = 17 - Essayer d’atteindre 18 en utilisant la calculatrice. Le problème n’a pas de solution.
Complément : Recherche des nombres qu’on peut atteindre 35 32 + 9 - 6 - 6 + 9 26 29 23 + 9 + 9 + 9 - 6 - 6 - 6 20 14 17 23 + 9 + 9 - 6 + 9 - 6 - 6 + 9 5 8 11 14 - 6 + 9 - 6 + 9 2 5 On peut atteindre les nombres : 2, 5, 8, 11, 14, 17, 20, 23, 26, 29, 32, 35, etc.
Jeu à deux « atteindre 15 » Le but du jeu est de fabriquer le premier le nombre 15 en ajoutant TROIS nombres compris entre 1 et 9. On dispose de neuf jetons sur lesquels sont inscrits les nombres entiers de 1 à 9. On tire au sort le joueur qui commence le premier. Chaque joueur choisit un jeton à tour de rôle parmi les jetons qui n’ont pas encore été choisis. Première version du jeu : chaque joueur ne tire pas plus de trois jetons (si un des joueurs voit qu’il obtient 15 en tirant son troisième jeton, il a gagné. Sinon, c’est match nul). 4 5 6 7 8 9 1 2 3 Joueur 1 Joueur 2 2 9 8 3 4 Le joueur 1 a gagné.
Deuxième version du jeu : On joue comme dans la première version mais si aucun joueur n’obtient 15 en tirant son troisième jeton, les joueurs continuent de choisir un jeton l'un après l'autre. Mais la règle ne change pas : il faut toujours obtenir 15 avec TROIS jetons. Dès qu'un joueur voit qu’il peut réaliser la somme 15 avec TROIS jetons PARMI les jetons qu'il a en sa possession, il a gagné. 1 2 3 4 5 6 7 8 9 Joueur 1 Joueur 2 8 8 3 1 1 6 6 2 4 7 Le joueur 1 a gagné. Remarques : si un joueur ne voit pas qu’il a obtenu 15, le jeu continue. si aucun joueur n’arrive à obtenir 15, il y a match nul.
Complément concernant le jeu « Atteindre 15 » : Quel nombre a intérêt à choisir le joueur qui commence ? - Recherche de toutes les décompositions additives de 15 utilisant trois nombres inférieurs à 10 15 = 1 + 5 + 9 15 = 2 + 4 + 9 15 = 3 + 4 + 8 15 = 4 + 5 + 6 15 = 1 + 6 + 8 15 = 2 + 5 + 8 15 = 3 + 5 + 7 15 = 2 + 6 + 7 - Recherche du nombre de fois où apparaît chacun des nombres de 1 à 9 dans les décompositions précédentes : Nombre Nombre d'apparitions 1 2 3 4 5 6 7 8 9 2 3 2 3 4 3 2 3 2 - Remarque : réalisation d'un carré magique avec les entiers de 1 à 9 (les sommes des nombres de chaque ligne de chaque colonne et de chaque diagonale doit valoir 15) 5 2 9 4 Le 5 qui apparaît 4 fois dans les décompositions de 15 doit être au centre. Dans chaque coin, il doit y avoir un nombre qui apparaît 3 fois dans les décompositions de 15. Exemple : 7 3 6 1 8
Vous pouvez aussi utiliser le lien ci-dessous : 60 énoncés de "problèmes pour chercher" pour le cycle 2 (document word) (Remarque : A partir de ce fichier, David Buffo a réalisé un document illustré pour CE1 qui est disponible)