Astrophysique • Théorie : 13 chapitres

Slides:



Advertisements
Présentations similaires
Mouvement des satellites et des planètes
Advertisements

Le Coté Obscur de la Gravité Frédéric Henry-Couannier CPPM/RENOIR Marseille
L’histoire ancienne.
De l’antiquité à PTOLÉMÉE
Les satellites.
L’astronomie.
DIAMÈTRE de la LUNE par ARISTARQUE
Rotations Terre et Lune Visibilité de la surface de la Lune
Repère temps - repère espace
Kepler et ses découvertes
Fixes Saturne Jupiter Mars Soleil Vénus Mercure Lune Terre.
REPÉRAGE DANS L’ESPACE
Histoire de l’Astronomie de l’antiquité à Newton
Les saisons La durée du jour
Sommaire I- Définition et généralité
Le carré de lhypoténuse. (c'est à dire dont le côté est l'hypoténuse)
Les deux premières lois de Kepler
Mouvement des corps céleste
1. La tÊte dans les Étoiles
L‘astronomie Moderne Noelia Rabal Marta Perales
Gaspard Présente L'HOMME FACE À L'INCONNU     Musical Transition manuelle.
l’héritage de Ptolémée
Chapitre 4. Mouvement des satellites et des planètes
La naissance de l’astronomie
La vision de l'espace au cours du temps
Attraction universelle Newton, la pomme et la Lune.
Les yeux tournés vers l’espace: Chapitre 13.3
Stonehenge (vers 1700 av. J.-C.), près de Salisbury, en Angleterre montre l'influence que l'astronomie avait sur ces hommes. Stonehenge était sans doute.
1. Le premier satellite artificiel.
1. Étude des caractéristiques du mouvement de Vénus
Nicolaus Copernicus ? Montage préparé par : André Ross
Ch 6 Application des lois de Newton et des lois de Kepler
Chapitre 11 : L’astrométrie et mesure des distances dans l’espace
COMPRENDRE : Lois et modèles
BUT DU COURS : LES SCIENCES DE L ’UNIVERS On s ’intéressera en particulier à : SCIENCES PHYSIQUES PHYSIQUE CLASSIQUE MECANIQUE PHYSIQUE DES ASTRES Mécanique.
Monde Musulman: Exposé sur l ’Astronomie dans l ’Islam
Monde Grec Ils ont appliqué leurs connaissances des Mathématiques
Cosmos ptolémaïque Cosmos copernicien Fixes Saturne Jupiter Mars
Dans l’univers, les étoiles sont regroupées en galaxie :
Deuxième planète du système solaire (Entre Mercure et la Terre), Vénus est notre plus proche voisine.Vénus tourne autour du Soleil sur une orbite quasi.
La Lune D’où vient la Lune?
Les savants grecs.

L’univers الكون Brahim.
Ce que nos ancêtres voyaient
Le système Soleil, Terre, Lune
2009 fut l’année mondiale de l’astronomie
Le Système Solaire Composantes Mouvements et Phases Dynamique
140 Tristan Go Galileo Galilei.
La gravitation en Astronomie.
1000 Hipparque de Nicée (-180 ; -125) ). e e Comment repérer le nord?
Diamètre de la Lune et distance Terre – Lune
Module #4 L’univers et la Terre
2. Description de l’univers 2. 1
Application des Lois de Newton aux mouvements
L’histoire des modèles de la système solaire
Les planètes du système solaire
La gravitation universelle
Isaac Newton ( ) (philosophe, mathématicien, physicien, alchimiste, astronome et théologien anglais) Il décompose la lumière blanche en son.
Applications des lois de Newton et de Kepler
Alternance jour nuit Fuseaux horaires Décalage horaire
CHAPITRE 3 : Les longueurs à l’échelle astronomique
Une nouvelle vision du monde
CHOISIR ENTRE LA SCIENCE ET DIEU. Genèse 1:1-5 Au commencement, Dieu créa les cieux et la terre. La terre était informe et vide: il y avait des ténèbres.
Histoire de la gravité.
Présentation orale : méthode scientifique, historique et procès
L’hypothèse héliocentrique
Galilée : l’invention de la méthode scientifique
GRES Tania NOUBEL Hugo POLLACCHI Clément Groupe C Aéro 1
Chapitre 10 Ce qu’on sait de l’univers nous a pris des milliers d’années d’apprendre.
Transcription de la présentation:

Astrophysique • Théorie : 13 chapitres • TP : exposé de ± 20 min sur un sujet au choix • Examen : oral, 2 questions • Cote finale : 2/3 examen + 1/3 exposé • Ouvrage de référence : Astronomie et Astrophysique (M. Séguin et B. Villeneuve)

Plan du cours 1. Naissance de l’astronomie 2. Le système solaire 3. Concepts de base 4. Observations astronomiques 5. Spectres stellaires 6. Sources d’énergie 7. Matière interstellaire et naissance des étoiles 8. Evolution des étoiles 9. La vie dans l’Univers 10. La Voie Lactée 11. Les galaxies 12. L’Univers extragalactique 13. Cosmologie

La naissance de l’astronomie • L’Univers dans les civilisations préscientifiques • L’astronomie, fille de l’astrologie • L’astronomie dans la Grèce antique • Le monde héliocentrique

L’Univers dans les civilisations préscientifiques Genèse 1.14 Dieu dit : qu’il y ait des luminaires dans le ciel, pour séparer le jour d’avec la nuit ; que ce soient des signes pour marquer les époques, les jours et les années ; 1.19 Ainsi, il y eut un soir et il y eut un matin : ce fut le quatrième jour. Le monde biblique : (influencé par Babylone) Terre plate, flottant sur les eaux Firmament reposant sur des piliers (montagnes) Le tout baigné par les eaux du ciel

L’Univers dans les civilisations préscientifiques - 2 La création du monde chez les babyloniens Le monstre femelle Tiamat (chaos primordial) est tué par Mardouk (dieu du tonnerre) Tiamat est coupée en deux : une moitié forme la terre et l’autre moitié le ciel Le sang du compagnon de Tiamat engendre les hommes Leur mission : servir les dieux

L’Univers dans les civilisations préscientifiques - 3 La création du monde chez les égyptiens (version Héliopolis) Atoum (dieu primordial) engendre Chou et Tefnou Chou (dieu de l’air) et Tefnou (déesse de l’humidité) engendrent les jumeaux Geb et Nout Chou (dieu de l’air) sépare Nout (déesse du ciel) de Geb (dieu de la terre), → naissance du monde que nous connaissons

L’Univers dans les civilisations préscientifiques - 4 Interprétation magique des événements Exemple : le cycle journalier du soleil correspond au voyage du dieu Râ dans le ciel, sur sa « barque de millions d’années » La nuit, Râ pénètre dans le monde souterrain où il mène un combat contre les forces des ténèbres ; victorieux, il se lève à nouveau Les phénomènes inexpliqués sont interprétés en termes d’actions individuelles de déités Pas de « lois naturelles »

L’astronomie, fille de l’astrologie Le ciel, domaine des dieux • les dieux habitent le ciel • la vie des hommes est sujette aux caprices des dieux → rechercher dans le ciel des signes du destin des hommes Tous les astres gardent la même position relative sauf : – le soleil – la lune – les 5 astres errants (planètes) → leurs positions sont des signes

L’astronomie, fille de l’astrologie - 2 Le zodiaque Les anciens repéraient les positions dans le ciel par rapport à des groupes d’étoiles (arbitraires) semblant dessiner des figures reconnaissables : les constellations Le mouvement apparent du soleil et des planètes les fait visiter une zone de la voûte céleste baptisée zodiaque Cette zone a été divisée en 12 constellations (de tailles un peu arrangées) correspondant aux 12 mois de l’année (un mois = un cycle de la lune)

L’astronomie, fille de l’astrologie - 3 Les astrologies babylonienne et grecque Pour les babyloniens, la position des astres errants influençait le destin des rois → importance de prédire les mouvements du soleil, de le lune et des planètes pour : – connaître leur configuration lors de la naissance du souverain – prédire leurs positions dans le futur → naissance de l’astronomie Les grecs reprennent les idées des babyloniens en les généralisant à tous les individus

L’astronomie, fille de l’astrologie - 4 La précession des équinoxes La terre n’est pas parfaitement sphérique L’attraction du soleil sur le renflement équatorial provoque une oscillation de l’axe de rotation de la terre avec une période de 26000 ans, autour de la perpendiculaire au plan de l’orbite (écliptique) → le plan de l’équateur tourne lui aussi → la droite d’intersection entre plan de l’équateur et plan de l’orbite tourne aussi → les constellations du zodiaque se décalent d’un signe tous les 26000 / 12 = 2170 ans, ce dont ne tiennent pas compte nos astrologues

L’astronomie dans la Grèce antique Thalès de Milet Le « premier scientifique », né vers 625 avant notre ère Q : Comment le monde est-il fait ? R : Le premier principe de toute chose est l’eau (élément que l’on trouve sous les 3 phases) Imagine la terre comme un disque flottant sur les eaux

L’astronomie dans la Grèce antique - 2 Anaximandre Élève de Thalès, né vers 610 avant notre ère Remplace l’élément unique de Thalès par les 4 éléments : – eau – terre – air – feu + la terre ne flotte pas sur les eaux mais est suspendue dans l’espace, « à égale distance de toutes choses »

L’astronomie dans la Grèce antique - 3 Platon Né vers 430 avant notre ère Pour lui, la vraie connaissance passe par la raison (l’œil de l’âme) et non par l’observation (l’œil du corps) Ce qui se trouve dans le ciel doit être parfait → les astres doivent se mouvoir selon des orbites immuables, parfaites Or, les formes géométriques parfaites sont la sphère et le cercle Le mouvement circulaire des astres étant parfait, il peut se perpétuer indéfiniment

L’astronomie dans la Grèce antique - 4 Eudoxe Disciple de Platon, né vers 410 avant notre ère Imagine l’univers en sphères concentriques (sphères d’Eudoxe) Terre au centre du monde Chaque sphère tourne à sa propre vitesse N’explique que très approximativement les mouvements planétaires

L’astronomie dans la Grèce antique - 5 Ératosthène Alexandrie, 3e siècle avant notre ère Détermine la circonférence de la terre Le 21 juin à midi, le soleil est à la verticale de Syène Or, à Alexandrie, ses rayons font un angle de 7° avec la verticale Distance entre Alexandrie et Syène : 5000 stades → circonférence de la terre : 5000 × 360 / 7 ≈ 257 000 stades Les historiens pensent qu’un stade = 157.5 m → 40 500 km de circonférence !

L’astronomie dans la Grèce antique - 6 Ératosthène a-t-il prouvé que la terre est ronde ? Modèle d’Ératosthène : terre sphérique, soleil très éloigné Alexandrie Syène → 7° d

L’astronomie dans la Grèce antique - 7 Modèle alternatif : terre plate, soleil proche d / D = tg 7° → D = d / tg 7° ≈ 40 000 stades ≈ 6400 km Alexandrie Syène 7° d D

L’astronomie dans la Grèce antique - 8 Hipparque (2e siècle avant notre ère) Détermine la distance terre – lune Durée max. d’une éclipse de lune : 2.5 h Période synodique lune : 708 h 2πD/e = 708/2.5 → D/e = 45 2θ = 0.5° = 1/114 rad (Φsoleil) e + 2θD = d (1/45 + 1/114) D = d D = 32 d Valeur moderne : D = 30 d θ d D e

L’astronomie dans la Grèce antique - 9 Mouvement rétrograde des planètes Comme le soleil et les étoiles, les planètes se lèvent à l’est et se couchent à l’ouest Elles semblent se déplacer un peu plus vite que les étoiles → leur sphère d’Eudoxe tourne plus vite Mais, quelquefois, la planète semble se déplacer moins vite → recule par rapport aux étoiles : mouvement rétrograde Comment le concilier avec un mouvement circulaire uniforme ?

L’astronomie dans la Grèce antique - 10 Ptolémée Né à Alexandrie vers 90 de notre ère Modifie le système d’Eudoxe pour expliquer le mouvement rétrograde Chaque planète se déplace sur un cercle appelé épicycle Le centre de l’épicycle se déplace sur un cercle appelé déférent La terre est au centre du déférent → reproduit le mouvement rétrograde, avec un épicycle et un déférent pour chaque planète déférent épicycle

L’astronomie dans la Grèce antique - 11 Ptolémée (2e acte) Le système original de Ptolémée ne rend pas bien compte des mesures d’Hipparque (variation de la vitesse angulaire) → Ptolémée le complexifie pour mieux « coller aux mesures » : – le centre du déférent est décalé par rapport à la terre – le mouvement circulaire est uniforme par rapport à un point symétrique de la terre appelé équant déférent épicycle équant

L’astronomie dans la Grèce antique - 12 Coïncidences inexpliquées • Centres des épicycles de Mercure et Vénus : sur la ligne terre – soleil • Pour Mars, Jupiter et Saturne : « rayon » de l’épicycle parallèle à la ligne terre – soleil → tendance des planètes à se positionner par rapport au soleil

L’astronomie dans la Grèce antique - 13 L’héritage des grecs + recours à la raison et non aux mythes ou vérités révélées ; liberté de pensée – rôle mineur de l’observation + ils savaient que la terre était ronde (oublié ensuite) + auraient même suggéré qu’elle tournait autour du soleil (Aristarque de Samos, 3e siècle avant notre ère) – la croyance en la « perfection » des phénomènes célestes (→ mouvements circulaires) a bloqué tout progrès de l’astronomie (de la science en général) pendant plus de 1000 ans → bilan contrasté

Le monde héliocentrique Nicolas Copernic (1473 – 1543) Né à Torun dans une famille aisée, étudie 10 ans en Italie → entre en contact avec les « idées nouvelles » Rentré en Pologne, chanoine à la cathédrale de Frauenburg Étudie les textes de Ptolémée S’installe un petit observatoire dans une tour Utilise les mêmes mesures de position des planètes que Ptolémée Montre qu’il existe une manière différente de les interpréter

Le monde héliocentrique - 2 Monde de Copernic Soleil au centre La terre et les astres errants (sauf la lune) tournent autour du soleil Orbites circulaires Explique simplement le mouvement rétrograde Ne rend pas précisément compte des mesures d’Hipparque → retour des épicycles

Le monde héliocentrique - 3 Comment choisir entre Ptolémée et Copernic ? Pour Ptolémée : • la tradition (surtout la religion) • le bon sens : si la terre se déplaçait, on le sentirait (mais Nicolas de Cuse (1450) : passager à l’intérieur d’un bateau) • absence de parallaxe des étoiles Pour Copernic : • explication plus simple du mouvement rétrograde • amplitude décroissante des rétrogradations de Mars – Jupiter – Saturne Ex-aequo : • niveau de complexité comparable • précision comparable ( ≈ 5°)

Le monde héliocentrique - 4 Tycho Brahé (1546 – 1601) Noble danois, étudie la philosophie à l’université mais s’intéresse surtout aux mathématiques Lors d’une éclipse, est profondément impressionné par le fait qu’on puisse prédire de tels événements → étudie l’astronomie 1572 : on observe une Nova dans la constellation de Cassiopée Changement dans le ciel → contradiction avec les idées des grecs → tentative de mesurer son mouvement (nature céleste ou atmosphérique ?) Manque de précision → conclusions contradictoires

Le monde héliocentrique - 5 Tycho Brahé (2) Construit un sextant de 5 pieds ½ → montre que la Nova ne bouge pas → réputation bien assise ; le roi Frédéric II du Danemark lui accorde une somme importante + l’île de Hven où il construit un observatoire Pendant 20 ans, Tycho : • tient cour au palais d’Uranienborg • réalise des mesures d’une précision jamais atteinte jusque là Après la mort de Frédéric II, Tycho a des ennuis avec le nouveau roi → s’exile à Prague en 1597

Le monde héliocentrique - 6 Johannes Kepler (1571 – 1630) Exilé à Prague pour cause de guerres de religion Engagé comme assistant par Tycho Brahé, chargé d’analyser ses mesures de positions de planètes Pensait que l’Univers avait été conçu selon un plan Passa une bonne partie de sa vie à rechercher ce plan qui devait révéler la beauté ultime de la nature

Le monde héliocentrique - 7 Premier modèle d’univers de Kepler Basé sur l’existence de 6 planètes et 5 solides réguliers Héliocentrique Les 5 solides réguliers occupent l’espace entre les 6 sphères planétaires

Le monde héliocentrique - 8 Les lois de Kepler (1) Analyse des mesures de Tycho > Kepler rejette à la fois géocentrisme et orbites basées sur des cercles et énonce 2 lois empiriques (1609) 1ère loi : Les planètes se meuvent sur des ellipses dont un des foyers est occupé par le soleil 2ème loi : Le rayon joignant le soleil à la planète balaie des aires égales en des temps égaux f1 f2

Le monde héliocentrique - 9 Les lois de Kepler (2) Une dizaine d’années plus tard, il énonce sa 3ème loi : Le carré de la période de révolution T d’une planète est proportionnel au cube du demi grand axe a de son orbite 3ème loi : T2 / a3 = Cte Contrairement aux modèles des Grecs, les lois de Kepler sont fondées sur une analyse minutieuse des observations b a

Le monde héliocentrique - 10 Galileo Galilei dit Galilée (1564 – 1642) Issu d’une famille peu fortunée de la noblesse italienne Apprend l’invention du télescope, en construit un et le tourne vers le ciel → découvre : • des montagnes sur la lune • des taches solaires • les phases de Vénus • 4 satellites de Jupiter → remise en cause de la vision platonicienne / géocentrique

Le monde héliocentrique - 11 Les démêlés de Galilée avec l’Église Se fait l’avocat inconditionnel du système héliocentrique Ecrit habiles et en italien → popularise cette vision du monde Dialogue concernant les deux systèmes du monde • Salvatio (partisan de Copernic) (1630) • Simplicio (partisan du système grec) • Sagredo (celui qui cherche la vérité) Met dans la bouche de Simplicio des arguments avancés par le pape → Procès : Galilée, vieux et malade, est contraint d’abjurer la doctrine hérétique du mouvement de la terre

Le monde héliocentrique - 12 Isaac Newton (1642 – 1727) Né dans une famille anglaise relativement aisée Étudie la philosophie naturelle à l’université de Cambridge 1665 – 1666 : épidémie de peste Newton se réfugie à Woolsthorpe et y invente ou découvre : • les calculs différentiel et intégral • la théorie des couleurs • la théorie de la gravitation universelle

Le monde héliocentrique - 13 Philosophiæ Naturalis Principia Mathematica (1687) Newton montre que toute la mécanique peut être déduite de quelques principes de base : • les 3 lois du mouvement dont la loi fondamentale de la mécanique : F = m a • la loi de la gravitation universelle

La naissance de l’astronomie • L’Univers dans les civilisations préscientifiques • L’astronomie, fille de l’astrologie • L’astronomie dans la Grèce antique • Le monde héliocentrique Fin du chapitre…